Nav: Home

Gatekeeping proteins to aberrant RNA: You shall not pass

November 02, 2016

Mistakes happen. This is the case in the process of transporting genetic information in cells. How our cells keep errors in this process in check is the subject of a new paper by researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab).

They found that proteins associated with aberrant strands of genetic code are regulated such that they enable gateway proteins to recognize and block them from exiting the nucleus. Unused messenger RNA (mRNA) strands that cannot exit the nucleus would eventually disintegrate.

Their findings, to be published Wednesday, Nov. 2, in the journal Scientific Reports, shed light on a complex system of cell regulation that acts as a form of quality control for the transport of genetic information out of the nucleus.

Getting a more complete picture of how genetic information gets expressed in cells is important in disease research, the researchers said.

"Some components of this machinery are dysregulated in various types of cancers," said study principal investigator Mohammad Mofrad, faculty scientist at Berkeley Lab's Molecular Biophysics and Integrated Bioimaging Division. "Understanding the molecular mechanism of genetic information transport and quality control would substantially improve the current knowledge about various types of cancers and other human diseases."

Biology textbooks already describe how strands of mRNA copy sections of DNA inside a cell's nucleus and then exit to the cell's cytoplasm. It is in the cytoplasm where the genetic code is used to synthesize proteins, so ensuring that only the correct mRNA strands get used is critical to the formation of properly functioning proteins.

"Just like all production lines, the process of genetic information transfer and protein production is quality controlled at different stages," said Mofrad. "To date, the exact mechanism of this quality control step has remained unclear."

Previous studies have looked at specific steps in this process, but the complex system of sorting out RNA that is ready to leave the nucleus has not been well understood.

Mofrad, who is also a professor of bioengineering and of mechanical engineering at UC Berkeley, and his Ph.D. student, Mohammad Soheilypour, turned to a computer model to shed light on this process of mRNA export.

"With experiments, we can study parts of a system, but there are limitations to their ability to provide the level of spatial and temporal resolution we need to really understand the behavior of a whole system," said Soheilypour.

The researchers focused on the interactions of messenger RNA, RNA-binding proteins, and gateway proteins called "nuclear basket proteins."

For humans and other vertebrates, these nuclear basket proteins are called Tpr, and for yeast they are Mlp1 and Mlp2. The nuclear basket proteins are positioned like guards at the membrane's gateways-- the nuclear pore complex (NPC)--through which mRNA must pass to leave the nucleus.

After validating the computer model with known data from previous studies, the researchers ran simulations to test the factors that influence the transport of mRNA out of the nucleus.

They found that a combination of a multitude of protein-protein interactions enables the cell to verify the readiness of mRNA for transport out of the nucleus. RNA-binding proteins are attached to each strand of mRNA, helping to recruit export receptors. Researchers found that regulation of the interaction between RNA-binding proteins and export receptors is the key for nuclear basket proteins to distinguish aberrant mRNAs and retain them inside the nucleus.

"Imagine that in order to exit the gate, you need a certain number of validated tickets," said Soheilypour. "The RNA-binding proteins are like the tickets the mRNA needs to get out, but those tickets need to be validated by the export factors. Without enough validated tickets, the guard proteins do not recognize the mRNA strand as something to let pass through the membrane's gate."

The study also found that longer strands of mRNA have more trouble passing through the nuclear membrane. They theorize that because longer mRNA needs extra time to compact itself while trying to get through the gate, guard proteins have more chances to check for "validated tickets."

More factors in this system may be considered in future studies, the researchers said.
-end-
The National Science Foundation helped support this research. Simulations were conducted on a computer cluster partly funded by Intel Corp.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

DOE/Lawrence Berkeley National Laboratory

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".