Pillars of destruction

November 02, 2016

The spires and pillars in the new images of the Carina Nebula are vast clouds of dust and gas within a hub of star formation about 7500 light-years away. The pillars in the nebula were observed by a team led by Anna McLeod, a PhD student at ESO, using the MUSE instrument on ESO's Very Large Telescope.

The great power of MUSE is that it creates thousands of images of the nebula at the same time, each at a different wavelength of light. This allows astronomers to map out the chemical and physical properties of the material at different points in the nebula.

Images of similar structures, the famous Pillars of Creation/ [1] in the Eagle Nebula and formations in NGC 3603, were combined with the ones displayed here. In total ten pillars have been observed, and in so doing a clear link was observed between the radiation emitted by nearby massive stars and the features of the pillars themselves.

In an ironic twist, one of the first consequences of the formation of a massive star is that it starts to destroy the cloud from which it was born. The idea that massive stars will have a considerable effect on their surroundings is not new: such stars are known to blast out vast quantities of powerful, ionising radiation -- emission with enough energy to strip atoms of their orbiting electrons. However, it is very difficult to obtain observational evidence of the interplay between such stars and their surroundings.

The team analysed the effect of this energetic radiation on the pillars: a process known as photoevaporation, when gas is ionised and then disperses away. By observing the results of photoevaporation -- which included the loss of mass from the pillars -- they were able to deduce the culprits. There was a clear correlation between the amount of ionising radiation being emitted by nearby stars, and the dissipation of the pillars.

This might seem like a cosmic calamity, with massive stars turning on their own creators. However the complexities of the feedback mechanisms between the stars and the pillars are poorly understood. These pillars might look dense, but the clouds of dust and gas which make up nebulae are actually very diffuse. It is possible that the radiation and stellar winds from massive stars actually help create denser spots within the pillars, which can then form stars.

These breathtaking celestial structures have more to tell us, and MUSE is an ideal instrument to probe them with.

[1] The Pillars of Creation are an iconic [image] - https://www.spacetelescope.org/images/heic1501a/ , taken with the [NASA/ESA Hubble Space Telescope] - http://spacetelescope.org/ , making them the most famous of these structures. Also known as [elephant trunks] - https://en.wikipedia.org/wiki/Elephant_trunks , they can be several light-years in length.

More information

This research was presented in a paper entitled "Connecting the dots: a correlation between ionising radiation and cloud mass-loss rate traced by optical integral field spectroscopy", by A. F. McLeod et al., published in the Monthly Notices of the Royal Astronomical Society.

The team is composed of A. F. McLeod (ESO, Garching, Germany), M. Gritschneder (Universitäts-Sternwarte, Ludwig-Maximilians-Universität, Munich, Germany), J. E. Dale (Universitäts-Sternwarte, Ludwig-Maximilians-Universität, Munich, Germany), A. Ginsburg (ESO, Garching, Germany), P. D.Klaassen (UK Astronomy Technology Centre, Royal Observatory Edinburgh, UK), J. C. Mottram (Max Planck Institute for Astronomy, Heidelberg, Germany), T. Preibisch (Universitäts-Sternwarte, Ludwig-Maximilians-Universität, Munich, Germany), S. Ramsay (ESO, Garching, Germany), M. Reiter (University of Michigan Department of Astronomy, Ann Arbor, Michigan, USA) and L. Testi (ESO, Garching, Germany).

ESO is the foremost intergovernmental astronomy organisation in Europe and the world's most productive ground-based astronomical observatory by far. It is supported by 16 countries: Austria, Belgium, Brazil, the Czech Republic, Denmark, France, Finland, Germany, Italy, the Netherlands, Poland, Portugal, Spain, Sweden, Switzerland and the United Kingdom, along with the host state of Chile. ESO carries out an ambitious programme focused on the design, construction and operation of powerful ground-based observing facilities enabling astronomers to make important scientific discoveries. ESO also plays a leading role in promoting and organising cooperation in astronomical research. ESO operates three unique world-class observing sites in Chile: La Silla, Paranal and Chajnantor. At Paranal, ESO operates the Very Large Telescope, the world's most advanced visible-light astronomical observatory and two survey telescopes. VISTA works in the infrared and is the world's largest survey telescope and the VLT Survey Telescope is the largest telescope designed to exclusively survey the skies in visible light. ESO is a major partner in ALMA, the largest astronomical project in existence. And on Cerro Armazones, close to Paranal, ESO is building the 39-metre European Extremely Large Telescope, the E-ELT, which will become "the world's biggest eye on the sky".


Research paper - http://www.eso.org/public/archives/releases/sciencepapers/eso1639/eso1639a.pdf

Photos of the VLT - http://www.eso.org/public/images/archive/category/paranal/


Anna Faye McLeod
Garching bei München, Germany
Tel: +49 89 3200 6321
Email: amcleod@eso.org

Mathias Jäger
Public Information Officer
Garching bei München, Germany
Tel: +49 176 62397500
Email: mjaeger@partner.eso.org


Related Radiation Articles from Brightsurf:

Sheer protection from electromagnetic radiation
A printable ink that is both conductive and transparent can also block radio waves.

What membrane can do in dealing with radiation
USTC recently found that polymethylmethacrylate (PMMA) and polyvinyl chloride (PVC) can release acidic substance under γ radiation, whose amount is proportional to the radiation intensity.

First measurements of radiation levels on the moon
In the current issue (25 September) of the prestigious journal Science Advances, Chinese and German scientists report for the first time on time-resolved measurements of the radiation on the moon.

New biomaterial could shield against harmful radiation
Northwestern University researchers have synthesized a new form of melanin enriched with selenium.

A new way to monitor cancer radiation therapy doses
More than half of all cancer patients undergo radiation therapy and the dose is critical.

Nimotuzumab-cisplatin-radiation versus cisplatin-radiation in HPV negative oropharyngeal cancer
Oncotarget Volume 11, Issue 4: In this study, locally advanced head and neck cancer patients undergoing definitive chemoradiation were randomly allocated to weekly cisplatin - radiation {CRT arm} or nimotuzumab -weekly cisplatin -radiation {NCRT arm}.

Breaking up amino acids with radiation
A new experimental and theoretical study published in EPJ D has shown how the ions formed when electrons collide with one amino acid, glutamine, differ according to the energy of the colliding electrons.

Radiation breaks connections in the brain
One of the potentially life-altering side effects that patients experience after cranial radiotherapy for brain cancer is cognitive impairment.

Fragmenting ions and radiation sensitizers
The anti-cancer drug 5-fluorouracil (5FU) acts as a radiosensitizer: it is rapidly taken up into the DNA of cancer cells, making the cells more sensitive to radiotherapy.

'Seeing the light' behind radiation therapy
Delivering just the right dose of radiation for cancer patients is a delicate balance in their treatment regime.

Read More: Radiation News and Radiation Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.