Nav: Home

GW researcher receives $2.8M grant to continue study of corneal wound healing

November 02, 2016

WASHINGTON (Nov. 2, 2016) -- George Washington University (GW) researcher Mary Ann Stepp, Ph.D., received a $2.8 million, five-year R01 grant from the National Institutes of Health to continue her 27 years of research on corneal wound healing. This research has important implications for surgical procedures such as Lasik and treatments for myopia and astigmatism, as well as general wound healing and cell migration, which are keys to understanding how cancer metastasizes.

"Using skin, it's harder to study wound healing that just looks at epithelial cell migration. When you break a blood vessel, you create puss and scar tissue - it's a much more complicated wound environment," said Stepp, professor of anatomy and regenerative biology and of ophthalmology at the GW School of Medicine and Health Sciences. "We use the cornea to remove some of those variables, isolating just the effects of the injury."

When Stepp started her research 27 years ago, she was interested in proteins called integrins, which mediate adhesion of the epithelial cells - the cells on the corneal surface - to their substrate. She was part of a research team that was the first to show a specific protein component of structures, called hemidesmosomes, which epithelial cells use to attach to the dermis in the skin and stroma in the cornea. Without these structures, the outer layer of the skin and cornea would fall off like cellophane wrapping paper, exposing the body to infections and causing dehydration.

In addition to studying the molecules and proteins at play, Stepp began to look at the nerves on the cornea and their role in allowing the cornea to heal. This research not only increases understanding of how the cornea heals, but of how the peripheral nervous system heals. The cornea is the most densely innervated surface of the body - there are more nerves per unit area on the surface of the cornea than anywhere else. They are frequently injured by scratches and eye rubbing. Also, the peripheral nerves in the cornea are similar to the peripheral nerves in the skin that become disrupted in diabetic patients who have small fiber neuropathy. This research will lead to a better understanding of how these nerves can grow back and stabilize themselves, making sure they do not cause pain and discomfort, as in dry eye. Stepp and her team found ways to image the nerves to create a comprehensive understanding of how they function and describe what normal, healthy nerves look like. At GW, Stepp works closely with researchers at the GW Institute for Neuroscience, particularly with Anthony-Samuel LaMantia, Ph.D., Sally Moody, Ph.D., Thomas Maynard, Ph.D., Robert Miller, Ph.D., and Ahdeah Pajoohesh-Ganji, Ph.D., as well as Anastas Popratiloff, M.D., Ph.D. of the GW Nanofabrication and Imaging Center.

"One of the reasons we shifted to looking more at the nerves in the cornea is because of the talent we have at GW," Stepp said. "We have all these wonderful colleagues to get advice from, to help with imaging, and to help understand the data we're generating from these nerves. The peripheral nervous system is new for me, and it's exciting to do this in the context of the environment we've built at GW over the last several years. One of the most exciting things has been to get the imaging techniques worked out and to increase understanding of these amazing images we're seeing of what these nerves look like."

During the previous funding period, Stepp and her research team characterized a model of recurrent corneal erosions and showed that subbasal nerves fail to reinnervate, or restore nerves, to the cornea prior to erosion formation. Additionally, they showed that they could induce subbasal nerve reinnervation by treating debridement wounded corneas with mitomycin C, a chemotherapy drug. This led to a long-term goal of identifying the factors that prevent the corneal epithelium from re-forming an intact stable barrier after trauma.

Stepp's latest research will look at two hypotheses: First, that corneal epithelial basal cells adhere to, protect, organize, and maintain the subbasal nerves, and second, that to resolve corneal pathology after trauma or disease, adhesion between corneal epithelial cells, subbasal nerves, and the basement membrane must be restored to levels present prior to development of pathology.
Media: For more information or to interview Dr. Stepp, please contact Lisa Anderson at or 202-994-3121.

About the GW School of Medicine and Health Sciences:

Founded in 1824, the GW School of Medicine and Health Sciences (SMHS) was the first medical school in the nation's capital and is the 11th oldest in the country. Working together in our nation's capital, with integrity and resolve, the GW SMHS is committed to improving the health and well-being of our local, national and global communities.

George Washington University

Related Epithelial Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
Defects in epithelial tissue organization -- A question of life or death
Researchers from the Mechanobiology Institute, Singapore at the National University of Singapore have discovered the primary mechanism driving the extrusion of dying cells from epithelial monolayers.
E-cigarette vapor does not cause oxidative stress in viable lung epithelial cells
E-cigarette vapor is much less harmful to lung cells than cigarette smoke.
Mechanisms & therapeutic targets of microRNA-associated chemoresistance in epithelial ovarian cancer
This review provides an overview of current therapeutic targets of miRNA-associated chemoresistance in EOC and illustrates the therapeutic potential and molecular mechanisms by which miRNAs influence the development and reversal of chemoresistance.
Researchers convert cirrhosis-causing cells to healthy liver cells in mice
A team of researchers led by UC San Francisco scientists has demonstrated in mice that it is possible to generate healthy new liver cells within the organ itself, making engraftment unnecessary.
Scientists turn skin cells into heart cells and brain cells using drugs
In a major breakthrough, scientists at the Gladstone Institutes transformed skin cells into heart cells and brain cells using a combination of chemicals.
Dying epithelial cells regulate immune system: Could help treating inflammatory diseases
A University of Tsukuba-based research team has shown that commensal bacteria in the gut can induce dendritic cells to release interferon-ß, which promotes Treg cell proliferation.
Gene family turns cancer cells into aggressive stem cells that keep growing
An examination of 130 gene expression studies in 10 solid cancers has found that when any of four related genes is overexpressed, patients have much worse outcomes, including reduced survival.

Related Epithelial Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".