Nav: Home

MAGNDATA: Towards a database of magnetic structures

November 02, 2016

Spanish Ministry of Economy and Competitiveness and FEDER, Government of the Basque Country The quantitative characterisation of the magnetic ordering realised in magnetic phases is an essential part of research into the magnetic properties of solids. It is certainly fundamental for the cross-checking of theoretical models and for the exploration of complex solid-state magnetic phenomena. Furthermore, the determination of magnetic structures, mainly using neutron diffraction data, is a fundamental step in the search for functional materials for magnetic and/or magnetostructural applications. Since the first report of a magnetic structure determined from neutron diffraction data in 1949, the magnetic structures of thousands of compounds have been investigated and reported. In 1976, an important effort was made to gather information available on all the magnetic structures known at that point, and a compilation of about 1000 magnetic structures was published. This effort continued with an additional listing of about 100 structures in 1984. Since then, experimental facilities, instruments and analysis methods have improved enormously, and hundreds of magnetic structures are being reported each year. It is estimated that, at the moment, there must be about 5000 published magnetic structures. In this scenario, the convenience of a digital database of magnetic structures seems clear, but despite some early work in this direction, the lack of standards in the description and communication of magnetic structures has precluded the development of an appropriate computer database.

Two recent developments have, however, opened up new possibilities for the systematic application of magnetic symmetry and the achievement of a standardised framework for the description and digital storage of magnetic structures.

Within this framework, a group of scientists from Spain, Turkey, USA and Japan have collected at the Bilbao Crystallographic Server, under the name MAGNDATA, comprehensive information on more than 400 commensurate and incommensurate magnetic structures. MAGNDATA is intended to be a benchmark and starting point for a complete database of magnetic structures, where magnetic symmetry is systematically employed and the magCIF format is the communication file format.
In a recently published paper [Gallego et al., (2016). J. Appl. Cryst. 49, doi:10.1107/S1600576716012863] the scientists present and discuss its main features for the case of commensurate structures. They concentrate on the information made available for each structure, and the way this information can be retrieved and analysed.

Part II of this paper covering incommensurate structures will be published in the December 2016 issue of the same journal; Gallego, S.V., Perez-Mato, J.M., Elcoro, L., Tasci, E.S., Hanson, R.M., Aroyo, M.I. & Madariaga, G. (2016). J. Appl.Cryst. 49, doi:10.1107/S1600576716015491

International Union of Crystallography

Related Communication Articles:

Trump's Twitter communication style shifted over time based on varying communication goals
The linguistic and discursive style of Donald Trump's tweets varied systematically before, during, and after the 2016 presidential campaign, depending on the communicative goals of Trump and his team, according to a study published Sept.
Intercultural communication crucial for engineering education
In an increasingly connected world it helps to engage with other cultures without prejudice or assumption.
New compound allows bacterial communication to be controlled by light
Scientists from the University of Groningen have succeeded in incorporating a light-controlled switch into a molecule used by bacteria for quorum sensing -- a process by which bacteria communicate and subsequently control different cellular processes.
Overtones can provide faster data communication
For the first time researchers have succeeded in producing what are known as spin wave overtones.
Communication interception can be traced through meteor trails
Meteor burst communication is based on using meteors as cryptography assistants.
Communication between neural networks
Researchers at the Bernstein Center Freiburg and colleagues are proposing a new model to explain how neural networks in different brain areas communicate with each other.
No cooperation without open communication
In models that explore how humans act when their reputation is at stake, usually assumptions were made that are at odds with reality.
Disrupting communication in infectious bacteria
Chemists in Konstanz inhibit the biosynthesis of a bacterial signal and, as a result, block the infectious properties of Pseudomonas aeruginosa, the most common germ found in health care facilities.
Bursting the clouds for better communication
We live in an age of long-range information. Research is turning towards the use of lasers which have several advantages.
Perovskites -- materials of the future in optical communication
Researchers at the universities in Linköping and Shenzhen have shown how an inorganic perovskite can be made into a cheap and efficient photodetector that transfers both text and music.
More Communication News and Communication Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.