Nav: Home

Single mutation in recessive gene increases risk of earlier onset Parkinson's disease

November 02, 2016

JACKSONVILLE, Fla. -- A collaboration of 32 researchers in seven countries, led by scientists at Mayo Clinic's campus in Florida, has found a genetic mutation they say confers a risk for development of Parkinson's disease earlier than usual.

The major study, published in Brain, is important because the risk comes from a single mutation in the PTEN-induced putative kinase 1 (PINK1) gene. Investigators had believed that this rare form of Parkinson's developed only when a person inherited mutations in both PINK1 alleles (one from each parent).

"We know that if you have mutations in both copies of PINK1, age at onset of Parkinson's will usually be younger than 45. This study showed that if a person inherited a specific mutation in just one PINK1 gene, the disease could develop at about age 55 or so. By contrast, the most common, nonfamilial forms of Parkinson's develop at about age 65," says the study's senior investigator, Wolfdieter Springer, Ph.D., a neuroscientist at Mayo Clinic's Florida campus.

Genetic studies had suggested that a single mutated PINK1 allele might confer an outsized risk of the developing the disease. It took a "very effective synergetic" effort of clinical, structural and cell biologists, along with geneticists and data from thousands of affected patients, to show how it led to earlier disease development, Dr. Springer says.

"It took a real international collaboration to solve this puzzle," he says.

PINK1 works with another gene, PARKIN, to ensure that mitochondria in neurons remain healthy. The mitochondria are the cell's power plants, and many brain disorders, including Parkinson's, are characterized by disruption in energy production in neurons.

When functioning, proteins from both genes work together to ensure the safe disposal of damaged mitochondria from the cell. They do this by producing a protein marker that labels damaged mitochondria that need to be destroyed. This procedure is part of an elaborate "quality control" system for mitochondria.

"The mitochondria are like a cell's nuclear power plant that provides fantastic energy when they are running well," Dr. Springer says. "But, when something goes wrong, the result can be catastrophic for the brain cell, causing neurodegeneration."

Mutations in both PINK1 alleles (or copies) or in both PARKIN alleles mean that the PINK1-PARKIN pathway cannot function, and damaged mitochondria accumulate in a neuron, leading to its death.

This study showed that a specific mutation (p.G411S) in one copy of PINK1 substantially impairs this same pathway by inhibiting the protein produced from other healthy PINK1 allele. "This rare mutation has an outsized effect, and the remaining levels of functional PINK1 protein are not enough to cope with damaged mitochondria," Dr. Springer says.

The findings could have implications for other neurodegenerative disorders, many of which feature mitochondrial damage, he says.

The study had started with genetic findings when one of the lead authors, Andreas Puschmann, M.D., Ph.D., of the Department of Neurology, Skåne University Hospital, Sweden, was a visiting scientist at Mayo Clinic. Additional structural and cell biological data then provided the sought-after mechanism to explain the observed phenomenon.
-end-
In addition from scientists in the U.S. and Sweden, researchers from Poland, Norway, Ireland, Ukraine and Australia participated in the study.

Dr. Springer is partially supported by the National Institutes of Health, National Institute of Neurological Disorders and Stroke [R01 #NS085070], the Michael J. Fox Foundation for Parkinson's Research, Foundation for Mitochondrial Medicine, Mayo Clinic Center for Regenerative Medicine, Mayo Clinic Center for Individualized Medicine, Center for Biomedical Discovery, Marriott Family Foundation, and a Gerstner Family Career Development Award. Dr. Puschmann is partially supported by the Swedish Parkinson Academy, the Swedish Parkinson Foundation (Parkinsonfonden), governmental funding for clinical research within the Swedish National Health Services, and the Bundy Academy (Lund, Sweden).

Mayo Clinic

Related Mitochondria Articles:

Uncovering the presynaptic distribution and profile of mitochondria
In a recent study published in the Journal of Neuroscience, scientists from the MPFI and the University of Iowa CCOM have provided unprecedented insight into the presynaptic distribution and profile of mitochondria in the developing and mature calyx of Held.
Temple researchers identify new target regulating mitochondria during stress
Like an emergency response team that is called into action to save lives, stress response proteins in the heart are activated during a heart attack to help prevent cell death.
Runaway mitochondria cause telomere damage in cells
Targeted damage to mitochondria produces a 'Chernobyl effect' inside cells, pelting the nucleus with harmful reactive oxygen species and causing chromosomal damage.
Interplay between mitochondria and nucleus may have implications for new treatment
Mitochondria, the 'batteries' that produce our energy, interact with the cell's nucleus in subtle ways previously unseen in humans, according to research published today in the journal Science.
Dissolving protein traffic jam at the entrance of mitochondria
Researchers from Freiburg discovered a novel mechanism that ensures obstacle-free protein traffic into the powerhouse of the cell.
Miro2 is a Parkin receptor for selective removal of damaged mitochondria
Defects in mitophagy are linked to a variety of human diseases including Parkinson's and cardiac disorders.
Broken mitochondria use 'eat me' proteins to summon their executioners
When mitochondria become damaged, they avoid causing further problems by signaling cellular proteins to degrade them.
Androgen receptor, treatment target for prostate cancer, imports into mitochondria
Androgens stimulate prostate cancer cells to grow. Many drugs to target that cancer focus on stopping androgen biosynthesis or blocking the androgen receptor, or AR.
Sea slug study illuminates how mitochondria move
Defects in the transport of cells' energy organelles are a suspected cause of diseases including Alzheimer's, ALS, Huntington's and Parkinson's.
A cause of possible genetic problems in mitochondria is revealed
The loss of mitochondrial information and of mitochondria gives rise to defective cell metabolism.
More Mitochondria News and Mitochondria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.