Nav: Home

Close galactic encounter leaves 'nearly naked' supermassive black hole

November 02, 2016

Astronomers using the super-sharp radio vision of the National Science Foundation's Very Long Baseline Array (VLBA) have found the shredded remains of a galaxy that passed through a larger galaxy, leaving only the smaller galaxy's nearly-naked supermassive black hole to emerge and speed away at more than 2,000 miles per second.

The galaxies are part of a cluster of galaxies more than 2 billion light-years from Earth. The close encounter, millions of years ago, stripped the smaller galaxy of nearly all its stars and gas. What remains is its black hole and a small galactic remnant only about 3,000 light-years across. For comparison, our Milky Way Galaxy is approximately 100,000 light-years across.

The discovery was made as part of a program to detect supermassive black holes, millions or billions of times more massive than the Sun, that are not at the centers of galaxies. Supermassive black holes reside at the centers of most galaxies. Large galaxies are thought to grow by devouring smaller companions. In such cases, the black holes of both are expected to orbit each other, eventually merging.

"We were looking for orbiting pairs of supermassive black holes, with one offset from the center of a galaxy, as telltale evidence of a previous galaxy merger," said James Condon, of the National Radio Astronomy Observatory. "Instead, we found this black hole fleeing from the larger galaxy and leaving a trail of debris behind it," he added.

"We've not seen anything like this before," Condon said.

The astronomers began their quest by using the VLBA to make very high resolution images of more than 1,200 galaxies, previously identified by large-scale sky surveys done with infrared and radio telescopes. Their VLBA observations showed that the supermassive black holes of nearly all these galaxies were at the centers of the galaxies.

However, one object, in a cluster of galaxies called ZwCl 8193, did not fit that pattern. Further studies showed that this object, called B3 1715+425, is a supermassive black hole surrounded by a galaxy much smaller and fainter than would be expected. In addition, this object is speeding away from the core of a much larger galaxy, leaving a wake of ionized gas behind it.

The scientists concluded that B3 1715+425 is what has remained of a galaxy that passed through the larger galaxy and had most of its stars and gas stripped away by the encounter -- a "nearly naked" supermassive black hole.

The speeding remnant, the scientists said, probably will lose more mass and cease forming new stars.

"In a billion years or so, it probably will be invisible," Condon said. That means, he pointed out, that there could be many more such objects left over from earlier galactic encounters that astronomers can't detect.

The scientists will keep looking, however. They're observing more objects, in a long-term project with the VLBA. Since their project is not time-critical, Condon explained, they use "filler time" when the telescope is not in use for other observations.

"The data we get from the VLBA is very high quality. We get the positions of the supermassive black holes to extremely good precision. Our limiting factor is the precision of the galaxy positions seen at other wavelengths that we use for comparison," Condon said. With new optical telescopes that will come on line in future years, such as the Large Synoptic Survey Telescope (LSST), he said, they will then have improved images that can be compared with the VLBA images. They hope that this will allow them to discover more objects like B3 1714+425.

"And also maybe some of the binary supermassive black holes we originally sought," he said.

Condon worked with Jeremy Darling of the University of Colorado, Yuri Kovalev of the Astro Space Center of the Lebedev Physical Institute in Moscow, and Leonid Petrov of the Astrogeo Center in Falls Church, Virginia. The scientists are reporting their findings in the Astrophysical Journal.

The VLBA, dedicated in 1993, now is part of the Long Baseline Observatory. It uses ten, 25-meter-diameter dish antennas distributed from Hawaii to St. Croix in the Caribbean. It is operated from the NRAO's Domenici Science Operations Center in Socorro, NM. All ten antennas work together as a single telescope with the greatest resolving power available to astronomy. This unique capability has produced landmark contributions to numerous scientific fields, ranging from Earth tectonics, climate research, and spacecraft navigation, to cosmology.
The Long Baseline Observatory is a facility of the National Science Foundation, operated under cooperative agreement by Associated Universities, Inc.

National Radio Astronomy Observatory

Related Black Hole Articles:

Scientists make waves with black hole research
Scientists at the University of Nottingham have made a significant leap forward in understanding the workings of one of the mysteries of the universe.
Collapsing star gives birth to a black hole
Astronomers have watched as a massive, dying star was likely reborn as a black hole.
When helium behaves like a black hole
A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space -- is also true for cold helium atoms that can be studied in laboratories.
Star in closest orbit ever seen around black hole
Astronomers have found evidence of a star that whips around a likely black hole twice an hour.
Tail of stray black hole hiding in the Milky Way
By analyzing the gas motion of an extraordinarily fast-moving cosmic cloud in a corner of the Milky Way, Astronomers found hints of a wandering black hole hidden in the cloud.
Hubble gazes into a black hole of puzzling lightness
The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle.
Clandestine black hole may represent new population
Astronomers have combined data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope and the National Science Foundation's Karl G.
When will a neutron star collapse to a black hole?
Astrophysicists from Goethe-University Frankfurt have found a simple formula for the maximum mass of a rotating neutron star and hence answered a question that had been open for decades.
Behemoth black hole found in an unlikely place
Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe.
Behemoth black hole found in an unlikely place
Astronomers have uncovered one of the biggest supermassive black holes, with the mass of 17 billion Suns, in an unlikely place: the centre of a galaxy that lies in a quiet backwater of the Universe.

Related Black Hole Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Failure can feel lonely and final. But can we learn from failure, even reframe it, to feel more like a temporary setback? This hour, TED speakers on changing a crushing defeat into a stepping stone. Guests include entrepreneur Leticia Gasca, psychology professor Alison Ledgerwood, astronomer Phil Plait, former professional athlete Charly Haversat, and UPS training manager Jon Bowers.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".