Nav: Home

Heart disease, leukemia linked to dysfunction in nucleus

November 02, 2016

LA JOLLA--We put things into a container to keep them organized and safe. In cells, the nucleus has a similar role: keeping DNA protected and intact within an enveloping membrane. But a new study by Salk Institute scientists, detailed in the November 2 issue of Genes & Development, reveals that this cellular container acts on its contents to influence gene expression.

"Our research shows that, far from being a passive enclosure as many biologists have thought, the nuclear membrane is an active regulatory structure," says Salk Professor Martin Hetzer, who is also holder of the Jesse and Caryl Philips Foundation chair. "Not only does it interact with portions of the genome to drive gene expression, but it can also contribute to disease processes when components are faulty."

Using a suite of molecular biology technologies, the Salk team discovered that two proteins, which sit in the nuclear envelope, together with the membrane-spanning complexes they form, actively associate with stretches of DNA to trigger expression of key genes. Better understanding these higher-level functions could provide insight into diseases that appear to be related to dysfunctional nuclear membrane components, such as leukemia, heart disease and aging disorders.

Historically, the nuclear membrane's main purpose was thought to be keeping the contents of the nucleus physically separated from the rest of the cell. Complexes of at least thirty different proteins, called nucleoporins, form gateways (pores) in the membrane, controlling what goes in or out. But as the Hetzer lab's work on nucleoporins shows, these nuclear pore complexes (NPCs), beyond being mere gateways into the nucleus, have surprising regulatory effects on the DNA inside.

"Discovering that key regulatory regions of the genome are actually positioned at nuclear pores was very unexpected," says Arkaitz Ibarra, a Salk staff scientist and first author of the paper. "And even more importantly, nuclear pore proteins are critical for the function of those genomic sites."

Curious about all the regions of DNA with which nucleoporins potentially interact, the team turned to a human bone cancer cell line. The scientists used a molecular biology technique called DamID to pinpoint where two nucleoporins, Nup153 and Nup93, came into contact with the genome. Then they used several other sequencing techniques to understand which genes were being affected in those regions, and how.

The Salk team discovered that Nup153 and Nup93 interacted with stretches of the genome called super-enhancers, which are known to help determine cell identity. Since every cell in our body has the same DNA, what makes a muscle cell different from a liver cell or a nerve cell is which particular genes are turned on, or expressed, within that cell. In the Salk study, the presence of Nup153 and Nup93 was found to regulate expression of super-enhancer driven genes and experiments that silenced either protein resulted in abnormal gene expression from these regions. Further experiments in a lung cancer cell line validated the bone cancer line results: Nucleoporins in the NPC were found to interact with multiple super-enhancer regions to drive gene expression, while experiments that altered the NPC proteins made related gene expression faulty, even though the proteins still performed their primary role as gatekeepers in the cell membrane.

"It was incredible to find that we could perturb the proteins without affecting their gateway role, but still have nearby gene expression go awry," says Ibarra.

The results bolster other work indicating that problems with the nuclear membrane play a role in heart disease, leukemia and progeria, a rare premature aging syndrome.

"People have thought the nuclear membrane is just a protective barrier, which is maybe the reason why it evolved in the first place. But there are many more regulatory levels that we don't understand. And it's such an important area because so far, every membrane protein that has been studied and found to be mutated or mis-localized, seems to cause a human disease," says Hetzer.
-end-
Other authors on the paper were Swati Tyagi of the Salk Institute, Chris Benner of the University of California, San Diego, and Jonah Cool of Organovo Holdings, Inc.

The work was funded by the Human Frontier Science Program, National Institutes of Health grant R01GM098749, NIH Transformative Research Award R01NS096786, the Glenn Foundation for Medical Research, the NOMIS Foundation, the Keck Foundation and American Cancer Society Award number P30CA014195.

About the Salk Institute for Biological Studies:

Every cure has a starting point. The Salk Institute embodies Jonas Salk's mission to dare to make dreams into reality. Its internationally renowned and award-winning scientists explore the very foundations of life, seeking new understandings in neuroscience, genetics, immunology and more. The Institute is an independent nonprofit organization and architectural landmark: small by choice, intimate by nature and fearless in the face of any challenge. Be it cancer or Alzheimer's, aging or diabetes, Salk is where cures begin. Learn more at: salk.edu.

Salk Institute

Related Heart Disease Articles:

Arsenic in drinking water may change heart structure raising risk of heart disease
Drinking water that is contaminated with arsenic may lead to thickening of the heart's main pumping chamber in young adults, according to a new study by researchers at Columbia University Mailman School of Public Health.
New health calculator can help predict heart disease risk, estimate heart age
A new online health calculator can help people determine their risk of heart disease, as well as their heart age, accounting for sociodemographic factors such as ethnicity, sense of belonging and education, as well as health status and lifestyle behaviors.
Wide variation in rate of death between VA hospitals for patients with heart disease, heart failure
Death rates for veterans with ischemic heart disease and chronic heart failure varied widely across the Veterans Affairs (VA) health care system from 2010 to 2014, which could suggest differences in the quality of cardiovascular health care provided by VA medical centers.
Heart failure: The Alzheimer's disease of the heart?
Similar to how protein clumps build up in the brain in people with some neurodegenerative diseases such as Alzheimer's and Parkinson's diseases, protein clumps appear to accumulate in the diseased hearts of mice and people with heart failure, according to a team led by Johns Hopkins University researchers.
Women once considered low risk for heart disease show evidence of previous heart attack scars
Women who complain about chest pain often are reassured by their doctors that there is no reason to worry because their angiograms show that the women don't have blockages in the major heart arteries, a primary cause of heart attacks in men.
Where you live could determine risk of heart attack, stroke or dying of heart disease
People living in parts of Ontario with better access to preventive health care had lower rates of cardiac events compared to residents of regions with less access, found a new study published in CMAJ (Canadian Medical Association Journal).
Older adults with heart disease can become more independent and heart healthy with physical activity
Improving physical function among older adults with heart disease helps heart health and even the oldest have a better quality of life and greater independence.
Dietary factors associated with substantial proportion of deaths from heart disease, stroke, and disease
Nearly half of all deaths due to heart disease, stroke, and type 2 diabetes in the US in 2012 were associated with suboptimal consumption of certain dietary factors, according to a study appearing in the March 7 issue of JAMA.
Certain heart fat associated with higher risk of heart disease in postmenopausal women
For the first time, researchers have pinpointed a type of heart fat, linked it to a risk factor for heart disease and shown that menopausal status and estrogen levels are critical modifying factors of its associated risk in women.
Maternal chronic disease linked to higher rates of congenital heart disease in babies
Pregnant women with congenital heart defects or type 2 diabetes have a higher risk of giving birth to babies with severe congenital heart disease and should be monitored closely in the prenatal period, according to a study published in CMAJ.
More Heart Disease News and Heart Disease Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.