Nav: Home

Major family of gene-regulating proteins has drug-sized pocket

November 02, 2016

National Institutes of Health, Department of Defense Congressionally Directed Medical Research Program La Jolla, Calif., November 3, 2016 -- An entire class of proteins called transcription factors, which regulate the activity of certain genes by interacting with specific sequences of DNA, has largely been ignored by the pharmaceutical industry because it's difficult to design and screen drugs against them. But a new study from scientists at Sanford Burnham Prebys Medical Discovery Institute suggests that a key group of transcription factors are in fact 'druggable,' including several that could be targeted to treat cancer, metabolic disease, or autoimmune conditions.

"We found that at least seven bHLH-PAS proteins have pockets where drugs would fit and remain tightly bound," said Fraydoon Rastinejad, Ph.D., professor in the Integrative Metabolism Program and senior author of the study. "That strongly suggests that all members of the family have similar, but chemically distinct, crevices that could bind drugs. Since these proteins serve as 'master regulators' for controlling whole gene programs, drugs against these targets could have broader effects than traditional ones that block single enzymes."

In the new study, published in eLIFE, Rastinejad and his lab first determined the structures of NPAS 1 and NPAS 3 proteins, each in complex with their partner, ARNT, using X-ray crystallography. All three proteins belong to the bHLH-PAS family of transcription factors. NPAS1 and NPAS3 control genes involved in brain and spinal cord development.

Rastinejad's team then compared the new structures to those of four other bHLH-PAS proteins, including two they previously solved, hypoxia-inducible factors (HIFs) 1α and 2α. In all seven proteins, they observed two similarly sized and architecturally positioned cavities in which small molecules could fit. Since three more bHLH-PAS transcription factors were known to interact with small molecules, it's safe to assume that these pockets are a common feature of the whole bHLH-PAS family.

Although variations in the NPAS1 and NPAS3 genes have been linked to brain disorders including autism, they aren't obvious drug targets because their function is most important in early life. However, modulating the activity of other bHLH-PAS proteins has been proposed to treat several diseases. For example, using drugs to block HIFs, which help cells survive when little oxygen is available, could stop the growth of certain cancers. Altering the function of the clock circadian regulator (CLOCK) and brain and muscle ARNT-like protein 1 (BMAL1), which keep cellular functions synchronized with day-night rhythms, could treat metabolic problems. And the aryl hydrocarbon receptor (AHR), which controls T cell differentiation, is a potential target for drugs to alleviate autoimmune disease.

"The fact that bHLH-PAS proteins have ligand-binding pockets insides their architectures suggests they're regulated by small molecules that are naturally found in the body," added Rastinejad. "That means we have a lot left to discover about these transcription factors. We anticipate that this research will spur many investigations to find their native activators and inhibitors and determine how they affect each protein's activity."
-end-
This research was performed in collaboration with scientists at the Argonne National Laboratory. Funding was provided by the National Institutes of Health and the Department of Defense Congressionally Directed Medical Research Program.

About SBP

Sanford Burnham Prebys Medical Discovery Institute (SBP) is an independent nonprofit medical research organization that conducts world-class, collaborative, biological research and translates its discoveries for the benefit of patients. SBP focuses its research on cancer, immunity, neurodegeneration, metabolic disorders and rare children's diseases. The Institute invests in talent, technology and partnerships to accelerate the translation of laboratory discoveries that will have the greatest impact on patients. Recognized for its world-class NCI-designated Cancer Center and the Conrad Prebys Center for Chemical Genomics, SBP employs about 1,100 scientists and staff in San Diego (La Jolla), Calif., and Orlando (Lake Nona), Fla. For more information, visit us at SBPdiscovery.org or on Facebook at facebook.com/SBPdiscovery and on Twitter @SBPdiscovery.

Sanford-Burnham Prebys Medical Discovery Institute

Related Brain Articles:

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
Landmark study reveals no benefit to costly and risky brain cooling after brain injury
A landmark study, led by Monash University researchers, has definitively found that the practice of cooling the body and brain in patients who have recently received a severe traumatic brain injury, has no impact on the patient's long-term outcome.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.