Nav: Home

'Nanoparticle taxicab' materials can identify, collect and transport debris on surfaces

November 02, 2016

AMHERST, Mass. - Inspired by proteins that can recognize dangerous microbes and debris, then engulf such material to get rid of it, polymer scientists led by Todd Emrick at the University of Massachusetts Amherst have developed new polymer-stabilized droplet carriers that can identify and encapsulate nanoparticles for transport in a cell, a kind of "pick up and drop off" service that represents the first successful translation of this biological process in a materials context.

As Emrick explains, "These carriers act as nanoparticle taxicabs. They find particles on one surface, recognize their composition, pick them up and drop them off later on another surface. The work is inspired by the very sophisticated biological/biochemical machinery operating in vivo, found for example in the case of osteoclasts and osteoblasts that work to balance bone density through deposition and depletion of material. We replicated this with much simpler components: oil, water and polyolefins." Details are now online in Science Advances.

He and colleagues believe theirs is the first demonstration of surface-to-surface nanoparticle transport or relocation, and suggest that "developing these methods would be exceptionally useful as a noninvasive technique for transferring nanoparticle properties (chemical, optical, magnetic or electronic) from one material to another."

The process is different than conventional cleaning,and nanoparticle encapsulation and release processes "represent a potential route to efficient materials transport and/or recycling processes," they add.

The authors say that "designing materials that mimic the complex function of biology holds promise for translating the efficiency and specificity of cellular processes into simple, smart synthetic systems." Future applications might include promoting cell adhesion, which is necessary for maintaining multi-cellular structures, and drug delivery, for example.

Emrick says he and his UMass Amherst co-authors including Richard Bai, George Chang and Al Crosby sought to adapt such biologically inspired advances in two areas: polymer-stabilized emulsion droplets that pick up nanoparticles by engulfing them into the droplet's fluid, and droplets that can deposit nanoparticles onto damaged regions of substrates for repair functions.

Their experimental system used hydroxyapatite, a calcium phosphate-rich structure that resembles the principal composition of bone. They assessed pick-up efficiency in several experimental conditions and attempted to establish the versatility of nanoparticle pick up using a variety of inorganic and plastic substrates. The researchers found that pick up was poor from certain surfaces, suggesting that "substrate composition may be exploited to adjust the relative extent of nanoparticle pick up."

Emrick points out that the project, supported by the U.S. Department of Energy's Office of Basic Energy Sciences, also reflects an "atom efficient" method for materials cleaning and repair. Because of its inherent simplicity and conservation of material, atom efficiency is an important concept in the "green chemistry" approach to producing products.
-end-


University of Massachusetts at Amherst

Related Nanoparticles Articles:

Chemists perform surgery on nanoparticles
A team of chemists led by Carnegie Mellon's Rongchao Jin has for the first time conducted site-specific surgery on a nanoparticle.
Nanoparticles remain unpredictable
The way that nanoparticles behave in the environment is extremely complex.
Gold standards for nanoparticles
KAUST researchers reveal how small organic 'citrate' ions can stabilize gold nanoparticles, assisting research on the structures' potential.
Lipid nanoparticles for gene therapy
Twenty-five years have passed since the publication of the first work on solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as a system for delivering drugs.
Nanoparticles hitchhiking their way along strands of hair
In shampoo ads, hair always looks like a shiny, smooth surface.
More Nanoparticles News and Nanoparticles Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...