Nav: Home

Controlling plant regeneration systems may drive the future of agriculture

November 02, 2016

The ability to self-repair damaged tissue is one of the key features that define living organisms. Plants in particular are regeneration champions, a quality that has been used for centuries in horticultural techniques such as grafting. Belgian scientists from VIB and Ghent University have now discovered a key protein complex that controls plant tissue repair. Understanding this mechanism is of great agricultural importance: crops and edible plants might be cultivated more efficiently and made more resistant to parasitic plants. The results are published in the leading journal Nature Plants.

In humans and animals, missing or damaged tissue can be replenished by stem cells. These basic, undifferentiated cells can change into more specific cell types and divide to produce new cells that replace the damaged tissue cells. Plants are characterized by a similar system, but their regenerative properties are generally much greater. While this asset has been widely used in grafting and plant tissue culture techniques, the mechanism by which cells are triggered to form new cells after injury remained largely elusive.

Agricultural breakthrough

A team led by professor Lieven De Veylder (VIB-Ghent University) uncovered a novel protein complex controlling tissue repair in plants. One dead plant cell is sufficient to send a signal to the surrounding cells, which activates the protein complex. As a result, these neighboring cells are triggered to divide in such a way that the newly produced cells can replace the dead ones.

Prof. De Veylder (VIB-Ghent University): "There are also a lot of plants and crops that don't have such swift repair systems, such as rice, wheat, corn, bananas and onions. By fully understanding this regeneration system, we might be able to induce it in those kinds of plants, thereby increasing cultivation efficiency. The same goes for grafting, which is employed in the wine and fruit industries, among others. Our findings may help to drastically reduce graft failure rate."

Harvesting the fruits of evolution

A new ecological strategy to counter parasitic plants is another potential future application of the study's results. These organisms, accounting for approximately 1% of flowering plants, are actually grafts that are able to grow through the mechanism described by the research project. In time, scientists may be able to block the natural grafting of these parasites onto economically important crops.

Prof. De Veylder (VIB-Ghent University): "Our findings illustrate how science can capitalize on the mechanisms of evolution. After all, nature has gradually developed solutions to nearly every biological problem. As scientists, it is our duty to get to the bottom of how these processes function and apply them to the benefit of society. As follow-up steps, we will check whether our results can be extrapolated to crops such as corn, and try to figure out the signals that activate the protein complex."
-end-


VIB (the Flanders Institute for Biotechnology)

Related Plants Articles:

Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
How plants can tell friend from foe
The plant's immune system can recognize whether a piece of RNA is an invader or not based on whether the RNA has a threaded bead-like structure at the end, say University of Tokyo researchers.
Plants at the pump
Regular, unleaded or algae? That's a choice drivers could make at the pump one day.
How do people choose what plants to use?
There are about 400,000 species of plants in the world.
Defend or grow? These plants do both
From natural ecosystems to farmers' fields, plants face a dilemma of energy use: outgrow and outcompete their neighbors for light, or defend themselves against insects and disease.
More Plants News and Plants Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...