Ions in the spotlight

November 02, 2017

The results of a research group from the Institute of Physics at the University of Freiburg has been given a special place in the Nature Photonics journal: an accompanying "News & Views" article in the print version of the science journal highlights the work of the team led by Alexander Lambrecht, Julian Schmidt, Dr. Leon Karpa and Prof. Dr. Tobias Schätz. In their article "Long lifetimes and effective isolation of ions in optical and electrostatic traps", the work group describes the method they used to prevent the previously unavoidable driven motion of trapped charged atoms.

The experiment begins by trapping individual Barium ions in a quadrupole ion trap, known as a Paul trap. A quadrupole ion trap can store charged particles for days using alternating electric fields. However this results in the ion constantly swirling on a microscopic scale and executing a forced driven motion. This often leads to undesirable side-effects. For example, in current experiments with ultracold atoms, the ions heat up the bath of neutral atoms - which is actually far cooler - like an immersion heater, instead of being cooled. This causes the temperature to rise by a factor of 10,000. Although this is still barely a thousandth of a degree Celsius above absolute zero, it already leads to heat death for sensitive quantum effects.

This is where the method that the group has been developing for its objectives since 2010 comes in: optical trapping of charged atoms. An extremely bright laser is used to trap the ion in its beam without compelling additional movement. A few years ago it was only possible to optically trap ions for a few milliseconds. Thanks to the work of the Freiburg physicists, it is now possible to trap charged atoms for similar timescales as neutral atoms in comparable optical traps - a lifetime of several seconds is several times longer than is required for experiments. In addition, the researchers have shown that they can also isolate the ions adequately from the remaining outside world. The team now hopes to use this method to achieve 10,000-times lower temperatures and observe ultracold chemical processes in which quantum effects will dominate the interaction of the particles.
In 2015 Tobias Schätz received a Consolidator Grant from the European Research Council (ERC) for his approach to trapping atoms and ions with light:

Original publication

Alexander Lambrecht, Julian Schmidt, Pascal Weckesser, Markus Debatin, Leon Karpa & Tobias Schaetz (2017): Long lifetimes and effective isolation of ions in optical and electrostatic traps. In: Nature Photonics 11, S. 704-707.

"News & Views":

University of Freiburg

Related Physics Articles from Brightsurf:

Helium, a little atom for big physics
Helium is the simplest multi-body atom. Its energy levels can be calculated with extremely high precision only relying on a few fundamental physical constants and the quantum electrodynamics (QED) theory.

Hyperbolic metamaterials exhibit 2T physics
According to Igor Smolyaninov of the University of Maryland, ''One of the more unusual applications of metamaterials was a theoretical proposal to construct a physical system that would exhibit two-time physics behavior on small scales.''

Challenges and opportunities for women in physics
Women in the United States hold fewer than 25% of bachelor's degrees, 20% of doctoral degrees and 19% of faculty positions in physics.

Indeterminist physics for an open world
Classical physics is characterized by the equations describing the world.

Leptons help in tracking new physics
Electrons with 'colleagues' -- other leptons - are one of many products of collisions observed in the LHCb experiment at the Large Hadron Collider.

Has physics ever been deterministic?
Researchers from the Austrian Academy of Sciences, the University of Vienna and the University of Geneva, have proposed a new interpretation of classical physics without real numbers.

Twisted physics
A new study in the journal Nature shows that superconductivity in bilayer graphene can be turned on or off with a small voltage change, increasing its usefulness for electronic devices.

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.

2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'

Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.

Read More: Physics News and Physics Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to