SUTD researchers solve mystery behind red blood cell maturation

November 02, 2017

Red blood cells are formed in the bone marrow from haematopoietic stem cells via a complex process known as erythropoiesis. Towards the end of this process, immature red blood cells also known as reticulocytes (multi-lobular and spherical) undergo dynamic re-arrangements to yield highly deformable biconcave erythrocytes (also known as normocytes), which performs gaseous and nutrient exchange throughout the body. However, molecular mechanisms underpinning these remarkable morphological and bio-mechanical transformations remained largely unknown. Through quantitative profiling of protein composition and imaging, a research team lead by Singapore University of Technology and Design (SUTD) Assistant Professor Rajesh Chandramohanadas is now able to explain this intriguing biological phenomenon.

Reticulocytes form a small proportion of human peripheral blood, often less than 2% of the total red blood cells. Therefore it is difficult to purify them in sufficient quantities and quality for large-scale experiments. To circumvent this problem, SUTD researchers purified young reticulocytes from cord blood (which contains ~ 4% reticulocytes) from normal term pregnancies. A magnetic selection protocol using an antibody against transferrin receptor was used to isolate immature red blood cells. To reduce sample complexity and increase overall coverage, these cells were again fractionated into membrane and soluble samples. Thereafter, a sophisticated quantitative mass spectrometry technique was employed which resulted in the identification and quantification of more than 1800 proteins. This is by far the most comprehensive information on protein composition for human red blood cells.

The team carefully analysed this large dataset and short-listed certain proteins such as talin and tubulin, which dramatically changed between immature and mature blood cells. Although such proteins are known to confer stiffness to biological cells, these proteins were confirmed as residues that remained in the reticulocytes from precursor cells.

The researchers then looked at the abundance of other proteins that are responsible for maintaining cellular architecture, such as a group of proteins called spectrins. Although the overall amount of spectrins remained comparable between reticulocytes and normocytes, the arrangement of these proteins were drastically different in reticulocytes as observed through microscopy. Filaments that formed spectrin-based network shrunk by roughly 20% during maturation, and this could account for the transition in shape and deformability of reticulocytes.

This research was published in top Haematology journal British Journal of Haematology, and its first authors are postdoctoral fellow Dr. Trang Chu and research assistant Mr. Ameya Sinha from SUTD. The research team also comprised of immunologists, biochemists and clinicians from various organizations such as Astar-SIgN (Laurent Renia and Benoit Malleret), KK Hospital (Jerry K. Chan) National University of Singapore (Bruce Russell), NTU (Sze Su Kwan and Navin Verma) and Mahidol-Oxford Tropical Medicine Research Unit (Francois Nosten).

Principal investigator Prof Chandramohanadas said: "This robust dataset on the protein composition of human red blood cells could help promote understanding of pathological conditions that affect blood cell maturation and function. Furthermore, these results will facilitate targeted analysis of interactions between blood cells and infectious agents- such as Plasmodium vivax malaria parasites which only infect young human reticuocuytes."
-end-


Singapore University of Technology and Design

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.