Navigating the genome to cure deafness

November 02, 2017

A new Tel Aviv University study solves a critical piece of the puzzle of human deafness by identifying the first group of long non-coding RNAs (lncRNAs) in the auditory system.

"The research on long non-coding RNAs is crucial to understanding how gene expression and regulatory elements influence the auditory system," says Prof. Karen Avraham, Vice Dean of TAU's Sackler Faculty of Medicine. "How do changes in these inheritable parts of the genome contribute to deafness? There is a need for new approaches and entry points to gene therapy. Knowing more about how genes are controlled may help devise strategies."

Prof. Avraham led the study together with Dr. Igor Ulitsky of the Weizmann Institute of Science. The results were recently published in Scientific Reports.

As much as 98% of the human genome is "non-coding" -- it does not code for protein. RNAs contained in this non-coding part act as regulatory molecules and have a large impact on gene expression: where in the body and when during development or adulthood genes are expressed. One type of these RNA molecules, long non-coding RNAs, has been linked to a wide range of diseases and inheritable conditions such as cancer and celiac disease.

"Ours is the first report describing lncRNAs on a comprehensive level in a model of human deafness. This work provides a resource to look further into some of the lncRNAs and study their exact function in the inner ear -- a key first step towards a potential cure," Prof. Avraham says.

According to the study, identifying the lncRNAs that play an unknown role in regulating genes involved in deafness will have an impact. "Recessive mutations causing disease -- and deafness -- continue to prevail, especially in the parts of the world where marriages take place between relatives, such as in the Middle East; this is known as 'consanguinity,'" Prof. Avraham says. "LncRNAs are situated beside deafness genes, suggesting they direct and regulate these genes. By further examining these lncRNAs down the line, we may be able to help the hard of hearing, young and old alike."

The researchers performed state-of-the-art next generation sequencing (NGS) on a model of human deafness to identify the critical lncRNAs. "We generated a whole-genome lncRNA profile to recognize differentially expressed lncRNAs in developing inner ear organ systems," Prof. Avraham explains. "The resulting catalogue, which contains over 3,000 lncRNAs, summarizes for the first time their expression patterns across the auditory and vestibular systems. We focused our attention on three genes out of these lncRNAs. They were selected because of their proximity to genes related to hearing and deafness."

The researchers are currently performing experiments on specific lncRNAs to reveal their precise functions within the inner ear sensory epithelium.

"There are still a considerable number of unsolved inherited deafness cases, despite the use of NGS," Prof. Avraham concludes. "This was what first led us to start an effort to identify novel genomic regulatory elements to explore the noncoding portion of the genome. Identifying such players can eventually assist in isolating pathogenic variants or regulatory elements that can be at the root of human hearing and balance disorders."
-end-
American Friends of Tel Aviv University (AFTAU) supports Israel's most influential, comprehensive and sought-after center of higher learning, Tel Aviv University (TAU). TAU is recognized and celebrated internationally for creating an innovative, entrepreneurial culture on campus that generates inventions, startups and economic development in Israel. For three years in a row, TAU ranked 9th in the world, and first in Israel, for alumni going on to become successful entrepreneurs backed by significant venture capital, a ranking that surpassed several Ivy League universities. To date, 2,400 patents have been filed out of the University, making TAU 29th in the world for patents among academic institutions.

American Friends of Tel Aviv University

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.