Nav: Home

University of Guelph study first to identify the cells driving gecko's ability to re-grow its tail

November 02, 2017

A U of G researcher is the first to discover the type of stem cell that is behind the gecko's ability to re-grow its tail, a finding that has implications for spinal cord treatment in humans.

Many lizards can detach a portion of their tail to avoid a predator and then regenerate a new one. Unlike mammals, the lizard tail includes a spinal cord.

Prof. Matthew Vickaryous found that the spinal cord of the tail contained a large number of stem cells and proteins known to support stem cell growth.

"We knew the gecko's spinal cord could regenerate, but we didn't know which cells were playing a key role," said Vickaryous, lead author of the study recently published in the Journal of Comparative Neurology. "Humans are notoriously bad at dealing with spinal cord injuries so I'm hoping we can use what we learn from geckos to coax human spinal cord injuries into repairing themselves."

Geckos are able to re-grow a new tail within 30 days - faster than any other type of lizard.

In the wild, they detach their tails when grabbed by a predator. The severed tail continues to wiggle, distracting the predator long enough for the reptile to escape.

In the lab, Vickaryous simulates this by pinching the gecko's tail causing the tail to drop. Once detached, the site of the tail loss begins to repair itself, eventually leading to new tissue formation and a new spinal cord. For this study, the biomedical sciences professor, along with PhD student Emily Gilbert, investigated what happens at the cellular level before and after detachment.

They discovered that the spinal cord houses a special type of stem cell known as the radial glia. These stem cells are normally fairly quiet.

"But when the tail comes off everything temporarily changes," he said. "The cells make different proteins and begin proliferating more in response to the injury. Ultimately, they make a brand new spinal cord. Once the injury is healed and the spinal cord is restored, the cells return to a resting state."

Humans, on the other hand, respond to a spinal cord injury by making scar tissue rather than new tissue, he added. The scar tissue seals the wound quickly, but sealing the injury prevents regeneration.

"It's a quick fix but in the long term it's a problem."

"This may play a role in why we have a limited ability to repair our spinal cords. We are missing the key cells types required."

This study is part of a series of investigations into the regenerative abilities of the gecko's central nervous system. The next step is to examine how the gecko is able to make new brain cells, said Vickaryous.

"Geckos are able to regenerate many tissues throughout their bodies, making them ideal models for studying wound healing and tissue re-development. We can learn a lot from them."
-end-


University of Guelph

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...