Molecular virologist fights influenza at the molecular level

November 02, 2018

BIRMINGHAM, Ala. - Molecular virologist Chad Petit, Ph.D., uses basic science to fight influenza -- through experiments at the atomic level.

This includes a deadly poultry influenza virus in China called the H7N9 avian flu virus. Since 2013, H7N9 has infected 1,625 people, killing 623. While not highly contagious for humans, just three mutations could change that, turning H7N9 into the feared Disease X, the term health experts use for the next unknown cause of a worldwide epidemic.

In research to improve influenza therapies against H7N9 and other influenza strains, Petit and his University of Alabama at Birmingham colleagues have detailed the binding site and mechanism of inhibition for two small-molecule experimental inhibitors of influenza viruses. Their report is published in the Journal of Biochemistry,

The two experimental inhibitors studied by Petit, a UAB assistant professor of biochemistry and molecular genetics, are small molecules whose precise mechanism of action was unknown. The inhibitors target the function of a key influenza protein called NS1, which has multiple roles to block the body's immune response during influenza infection. Thus, NS1 is essential to the survival and adaptability of the influenza virus.

Petit and colleagues used nuclear magnetic resonance, or NMR, spectroscopy to probe interactions of the inhibitors with NS1. They first showed that the inhibitors -- called A9 and A22 -- interacted with just one of the two independently folded domains of NS1, the NS1 effector domain.

The researchers noted that the structures of both small-molecule inhibitors were very similar to a fragment of a host protein called CPSF30 that the NS1 effector domain binds in order to short-circuit the body's immune response. Therefore, the researchers hypothesized that A9 and A22 block influenza viral replication and block NS1 function by interfering with the interaction between the NS1 effector domain and CPSF30.

NMR data revealed the particular amino acids of the NS1 effector domain that are involved in inhibitor binding. The researchers -- using two significantly different NS1 proteins from distinct influenza strains, including the H7N9 strain -- showed that similar sequences of amino acids in the two NS1 proteins were involved in inhibitor binding.

The 1918 "Spanish" flu NS1 protein

Besides the Chinese H7N9 NS1, the other NS1 protein tested was the NS1 effector domain from the 1918 "Spanish" flu, which infected one-third of the world's population a century ago and killed 50 million to 100 million people.

The UAB researchers then used X-ray crystallography, led by UAB Microbiology assistant professor Todd Green, Ph.D., to determine the three-dimensional structure of the NS1 effector domain from the 1918 "Spanish" flu. This allowed them to map the A9/A22-binding site onto that structure, which confirmed their hypothesis -- A9 and A22 interact with the NS1 effector domain hydrophobic pocket that is known to bind the host protein CPSF30.

The crystallography data also showed that the NS1 effector domain is able to dimerize, using an interface different from two other known dimers of the NS1 effector domain. Biological significance of this new dimer form is unknown.

"Altogether, our findings provide strong evidence for the mechanism of action of two anti-influenza compounds that target NS1, and the findings contribute significant structural insights into NS1 that we hope will promote and inform the development and optimization of influenza therapies based on A9 and A22," Petit said.

The need for novel antiviral compounds is great. Each year, influenza strains kill 250,000 to 500,000 people worldwide, and the virus is noted for quick changes to produce pandemic strains that few people have immunity against. Viral resistance has limited the effectiveness of several earlier antiviral compounds that were developed to treat influenza.
-end-
This study was made available online in August 2018 ahead of final publication in print on September 21, 2018.

Co-authors with Petit on the paper, "Structural analyses reveal the mechanism of inhibition of influenza virus NS1 by two antiviral compounds," are Alex B. Kleinpeter, Alexander S. Jureka and Sally M. Falahat, UAB Department of Biochemistry and Molecular Genetics; and Todd J. Green, UAB Department of Microbiology.

Support for the research came from National Institutes of Health grants AI1346931 and AI116738. Portions of the research were performed at Argonne National Laboratory, Illinois, and support for the UAB Central Alabama High-Field NMR Facility came from National Institutes of Health grants CA-13148, RR022994-01A1 and CA-13148.

University of Alabama at Birmingham

Related Immune Response Articles from Brightsurf:

Boosting chickens' own immune response could curb disease
Broiler chicken producers the world over are all too familiar with coccidiosis, a parasite-borne intestinal disease that stalls growth and winnows flocks.

Cells sacrifice themselves to boost immune response to viruses
Whether flu or coronavirus, it can take several days for the body to ramp up an effective response to a viral infection.

Children's immune response more effective against COVID-19
Children and adults exhibit distinct immune system responses to infection by the virus that causes COVID-19, a finding that helps explain why COVID-19 outcomes tend to be much worse in adults, researchers from Yale and Albert Einstein College of Medicine report Sept.

Which immune response could cause a vaccine against COVID-19?
Immune reactions caused by vaccination can help protect the organism, or sometimes may aggravate the condition.

Obesity may alter immune system response to COVID-19
Obesity may cause a hyperactive immune system response to COVID-19 infection that makes it difficult to fight off the virus, according to a new manuscript published in the Endocrine Society's journal, Endocrinology.

Immune response to Sars-Cov-2 following organ transplantation
Even patients with suppressed immune systems can achieve a strong immune response to Sars-Cov-2.

'Relaxed' T cells critical to immune response
Rice University researchers model the role of relaxation time as T cells bind to invaders or imposters, and how their ability to differentiate between the two triggers the body's immune system.

A novel mechanism that triggers a cellular immune response
Researchers at Baylor College of Medicine present comprehensive evidence that supports a novel trigger for a cell-mediated response and propose a mechanism for its action.

Platelets exacerbate immune response
Platelets not only play a key role in blood clotting, but can also significantly intensify inflammatory processes.

How to boost immune response to vaccines in older people
Identifying interventions that improve vaccine efficacy in older persons is vital to deliver healthy ageing for an ageing population.

Read More: Immune Response News and Immune Response Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.