New analysis method can lead to better cancer drugs

November 02, 2020

While proteins on the surface of cells are the targets for most drugs, refined methods are needed to analyse how these membrane proteins are organised. Researchers at Karolinska Institutet have developed a new DNA-based analytical method that could contribute to the development of future drugs for breast and other cancers. The study is published in Nature Nanotechnology.

The efficacy of most drugs in clinical use is attributable to their interaction with proteins on cell membranes. It is therefore essential to understand how these proteins operate in health and disease.

Many of the proteins on the cell membrane are distributed into functional units, domains of nano-scale dimensions (i.e. 10-6 mm).

Membrane proteins are analysed using super-resolution microscopy, a technique limited by the fact that only a small number of membrane proteins - normally three - can be analysed at the same time.

Researchers at Karolinska Institutet have now developed a method that increases this number. This non-microscope-based method for analysing entire populations of cells is called NanoDeep (NANOscale DEciphEring of membrane Protein nanodomains).

The method is based on the use of DNA analysis to translate information on membrane-protein organisation. There are no limits to the number of such proteins that NanoDeep can analyse simultaneously. Their work has not only enabled the researchers to corroborate previous findings but also led to new discoveries.

"NanoDeep currently has a resolution in the 10 nanometre interval, that's 10 billionths of a metre, which surpasses many other methods of super-resolution microscopy," says the study's last author Ana Teixeira, researcher at the Department of Medical Biochemistry and Biophysics, Karolinska Institutet. "NanoDeep has the potential to bring new insights into the regulation of membrane protein function."

Using NanoDeep, the researchers have been able to describe protein environments surrounding the membrane receptor Her2, a membrane protein that transmits information to proteins inside the cell.

Her2 is over-represented in breast and other types of cancer. A better understanding of Her2 will improve the chances of developing new drugs that prevent most recurrences of such cancers.

The new method has been developed to be as simple as possible.

"Our method makes the use of information on the spatial organisations of proteins at a nano-scale more accessible as a diagnostic tool in clinical tests," says the study's first author, postdoctoral researcher Elena Ambrosetti. "It can also be used as a tool for developing new kinds of drug designed to affect the function of membrane proteins."
-end-
The study was conducted with grants from the European Research Council, the Swedish Research Council and the Knut and Alice Wallenberg Foundation. There are no declared conflicts of interest.

Publication:
"A DNA-nanoassembly-based approach to map membrane protein nanoenvironments", Elena Ambrosetti, Giulio Bernardinelli, Ian Hoffecker, Leonard Hartmanis, Georges Kiriako, Ario de Marco, Rickard Sandberg, Bjorn Hogberg, Ana I. Teixeira. Nature Nanotechnology, online November 2 2020, doi: 10.1038/s41565-020-00785-0.

Karolinska Institutet

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.