UNH research: Longer mud season, no snow could alter northeast rivers by 2100

November 02, 2020

DURHAM, N.H. - As temperatures begin to drop and fall transitions into winter, snow will soon blanket the northern regions of the United States. But researchers at the University of New Hampshire have found that snow cover is on the decline in this area due to climate change and the shift from winter to spring, known as the vernal window, is getting longer. By the end of the century, the scientists say the vernal window, sometimes referred to as mud season in the northeast, could be two to four weeks longer which means significantly less melting snow that could be detrimental to key spring conditions in rivers and surrounding ecosystems.

"We found that climate change could alter the vernal window so much that by the year 2100, 59% of northeastern North America - which goes from Maine to Virginia - would not accumulate any snow," said Danielle Grogan research scientist in UNH's Earth Systems Research Center and lead author. "Historically, an average of 27% of the northeast goes without snow but by the end of century states like Connecticut and Pennsylvania could be snow free."

In their Environmental Research Letters, the researchers looked at a variety of ecological factors that determine the length of the vernal window which scientists define as the transition time from winter to spring when there isn't any snowpack or forest canopy. They focused on three key vernal window events: snow disappearance, spring runoff, and budburst - the appearance of buds on plants that signals the end of the vernal window. Climate datasets that projected future temperature and precipitation were used to drive simulation models to assess the shift in both the opening and closing of the vernal window as well as the effect on rivers and surrounding ecosystems over the period from 1980 to 2099.

"Snow melt is a major event for rivers and forests in the northeast," said Grogan. "It moves nutrients from the land to the rivers, boosts water levels and triggers essential spring happenings like the migration of fish. Losing the snow and the melt would change ecosystems on many levels and remove key signals that would disrupt natural patterns like fish mating."

Previous studies have examined how climate change will alter the vernal window but few have explored the impact on rivers and surrounding areas during this transitional period. Researchers say by lengthening the vernal window and decreasing snow melt conditions in this area it could become similar to southern snow-free regions and would be a fundamental change in the hydrologic character of the northeast.
Co-authors include Elizabeth Burakowski, research assistant professor, and Alexandra, Contosta, research assistant professor, both at UNH.

The research was funded by the National Science Foundation.

The University of New Hampshire inspires innovation and transforms lives in our state, nation, and world. More than 16,000 students from all 50 states and 71 countries engage with an award-winning faculty in top-ranked programs in business, engineering, law, health and human services, liberal arts and the sciences across more than 200 programs of study. As one of the nation's highest-performing research universities, UNH partners with NASA, NOAA, NSF and NIH, and receives more than $110 million in competitive external funding every year to further explore and define the frontiers of land, sea and space.

University of New Hampshire

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.