Bats can predict the future, JHU researchers discover

November 02, 2020

They can't tell fortunes and they're useless with the stock market but bats are quite skilled at predicting one thing: where to find dinner.

Bats calculate where their prey is headed by building on-the-fly predictive models of target motion from echoes, Johns Hopkins University researchers find. The models are so robust, bats can continue to track prey even when it temporarily vanishes behind echo-blocking obstacles like trees.

Although predicting object motion paths through vision has been extensively studied, these findings, published today in the journal PNAS, are the first to examine the comparable process in hearing. The work enhances the understanding of auditory-guided behaviors in animals and humans, including sight-impaired people who use listen to sounds to track objects in their surroundings.

"Just the way a tennis player needs to find out when and where they will hit the ball, a bat needs to anticipate when and where it will make contact with the insect it's hunting," said senior author Cynthia F. Moss, a neuroscientist and professor of Psychological and Brain Sciences. "The insect is flying. The bat is also flying. In this very rapidly changing environment, if the bat were to just rely on the information it got from the most recent echo, it would miss the insect."

The bat uses the time delay between each echolocation call and the resulting echoes to determine how far away prey is. They tilt their heads to catch the changing intensity of echoes to figure out where the prey is in the horizontal plane. Bats must put together echo information about object distance and direction to successfully track an erratic moving insect.

But because bats are such good hunters, the research team thought that in addition, the bats must also be somehow using this information to predict where they prey is headed. To test this in the lab, they designed an experiment that closely mirrored the situation of a bat hunting in the wild.

They trained bats to stay on a perch and track insects. The team recorded the bat's echolocation calls and head movements as they changed where the insects moved and how quickly. They also added obstacles that interrupted the echoes.

"We devised mathematical models to test the data and we came up with different hypotheses of what the bats could be doing," said co-first author Clarice Anna Diebold, a doctoral candidate in Psychological and Brain Sciences.

If that bat wasn't predicting where the insect would be, its head movements would always lag behind the target. But that wasn't the case. If the bat kept his head in a fixed position, which sometimes reflected where the insect ended up, that would eliminate the prediction theory. But that wasn't happening either. And if the bat was only using information from the echoes to estimate velocity, that wouldn't be enough to explain the extent of the bat's precision.

"We hypothesized that bats use both the velocity information from the timing of the echoes and further adjust their head aim," said co-first author Angeles Salles, a postdoctoral fellow. "When we tested this model with our data, we saw it fit very well."

The findings upend the previous accepted notion that bats do not predict an insect's future position -- a conclusion largely drawn from a 1980s study done before high-speed video was widely available.

"The question of prediction is important because an animal must plan ahead to decide what it's going to do next," said Salles. "A visual animal or a human has a stream of information coming in, but for bats it's remarkable because they're doing this with only brief acoustic snapshots."

Although bats are studied here, the findings apply to any animals that track moving sounds, and even to people, like the blind, who use clicks and cane taps to help them navigate while avoiding obstacles.
This work was funded by Human Frontiers Science Program Fellowship LT000220/2018; NSF Fellowship GRFP 2018261398; NSF Brain Initiative Grant NCS-FO 1734744 (2017- 2021); AFOSR Grant FA9550-14-1-0398NIFTI; and ONR Grant N00014-17-1- 2736.

Johns Hopkins University

Related Bats Articles from Brightsurf:

These masked singers are bats
Bats wear face masks, too. Bat researchers got lucky, observing wrinkle-faced bats in a lek, and copulating, for the first time.

Why do bats fly into walls?
Bats sometimes collide with large walls even though they detect these walls with their sonar system.

Vampire bats social distance when they get sick
A new paper in Behavioral Ecology finds that wild vampire bats that are sick spend less time near others from their community, which slows how quickly a disease will spread.

Why doesn't Ebola cause disease in bats, as it does in people?
A new study by researchers from The University of Texas Medical Branch at Galveston uncovered new information on why the Ebola virus can live within bats without causing them harm, while the same virus wreaks deadly havoc to people.

The genetic basis of bats' superpowers revealed
First six reference-quality bat genomes released and analysed

Bats offer clues to treating COVID-19
Bats carry many viruses, including COVID-19, without becoming ill. Biologists at the University of Rochester are studying the immune system of bats to find potential ways to ''mimic'' that system in humans.

A new social role for echolocation in bats that hunt together
To find prey in the dark, bats use echolocation. Some species, like Molossus molossus, may also search within hearing distance of their echolocating group members, sharing information about where food patches are located.

Coronaviruses and bats have been evolving together for millions of years
Scientists compared the different kinds of coronaviruses living in 36 bat species from the western Indian Ocean and nearby areas of Africa.

Bats depend on conspecifics when hunting above farmland
Common noctules -- one of the largest bat species native to Germany -- are searching for their fellows during their hunt for insects above farmland.

Tiny insects become 'visible' to bats when they swarm
Small insects that would normally be undetectable to bats using echolocation suddenly become detectable when they occur in large swarms.

Read More: Bats News and Bats Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to