Study reveals unexpected protective role for brain swelling after injury

November 02, 2020

Following a brain-injuring bump or blow to the head, brain cells and blood vessels typically swell. This can lead to a potentially life-threatening increase in pressure inside the skull, and managing swelling is critical for patients with traumatic brain injuries (TBIs). But researchers at
According to animal studies led by Punam Sawant-Pokam, Ph.D., and
suggest that patients with these injuries may benefit from a more targeted approach to managing cerebral swelling, also known as edema.

"This data prompts a pretty big reconsideration of how we view edema after brain injury," Brennan says. "When edema is about to cause death, it is the number one priority. We're not saying this is not true. But we're opening up more nuance to the phenomenon in a way that might allow us to eventually get to more specific treatments and better outcomes."

The research was carried out in collaboration with

In 2017, more than one million hospitalizations and emergency department visits were associated with TBIs in the United States. Brennan explains that one of the consequences of these injuries is what he calls toxic brain excitability. Activity in the brain's neural networks can surge in the days following injury, damaging tissue and establishing patterns that leave patients vulnerable to seizures, headaches, and other complications for months or years after their acute symptoms resolve.

Brennan's team investigated what happens to neurons in the week following a TBI, as swelling in the brain builds and eventually subsides. Sawant-Pokam, a research assistant professor, led the experimental work, using sophisticated brain imaging and electrical recording tools that have never been used before to study TBI.

Her experiments showed that 48 hours after injury--the point at which patients usually experience the most swelling--individual neurons in the brains of mice were enlarged and misshapen, confirming that edema directly affects the brain's neural circuits. However, this swelling was accompanied by a surprising reduction in the nerve cells' activity. One week after injury, when swelling had subsided, neurons were more excitable than they had been prior to injury.

Alleviating the swelling immediately following an injury appeared to put the animals at greater risk for harmful brain activity. When the researchers gave injured mice drugs to reduce edema, neurons returned to their normal shape but became more active, signaling excessively. That overactivity was associated with an increase in seizures, as well as massive waves of neural firing known as spreading depolarizations. In patients, both seizures and spreading depolarizations are associated with poor long-term outcomes from brain injury.

Researchers still need to more fully explore the impacts of cerebral edema, which may differ at different time points after an injury. But Sawant-Pokam, Brennan, and colleagues are hopeful that this unexpected protective role presents an opportunity to improve the long-term prognosis for patients with TBIs.

"It's very exciting to know that neuronal edema is not only reducing cellular excitability, it's also protecting the brain from dangerous network events," Sawant-Pokam says. With a deeper understanding of exactly how neurons swell, it may be possible to devise new treatments that relieve intracranial pressure without interfering with this protective mechanism, she says.
-end-
Other authors who contributed to this work are Tyler J. Vail, Thomas O. McKean, and Nick D. McKean from the Brennan and Sawant-Pokam Labs.

The research published as "

University of Utah Health

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.