Moving holograms: From science fiction to reality

November 03, 2010

Remember the Star Wars scene in which R2D2 projects a three-dimensional image of a troubled Princess Leia delivering a call for help to Luke Skywalker and his allies? What used to be science fiction is now close to becoming reality thanks to a breakthrough in 3D holographic imaging technology developed at the University of Arizona College of Optical Sciences.

A team led by optical sciences professor Nasser Peyghambarian developed a new type of holographic telepresence that allows the projection of a three-dimensional, moving image without the need for special eyewear such as 3D glasses or other auxiliary devices. The technology is likely to take applications ranging from telemedicine, advertising, updatable 3D maps and entertainment to a new level.

The journal Nature chose the technology to feature on the cover of its Nov. 4 issue.

"Holographic telepresence means we can record a three-dimensional image in one location and show it in another location, in real-time, anywhere in the world," said Peyghambarian, who led the research effort.

"Holographic stereography has been capable of providing excellent resolution and depth reproduction on large-scale 3D static images," the authors wrote, "but has been missing dynamic updating capability until now."

"At the heart of the system is a screen made from a novel photorefractive material, capable of refreshing holograms every two seconds, making it the first to achieve a speed that can be described as quasi-real-time," said Pierre-Alexandre Blanche, an assistant research professor in the UA College of Optical Sciences and lead author of the Nature paper.

The prototype device uses a 10-inch screen, but Peyghambarian's group is already successfully testing a much larger version with a 17-inch screen. The image is recorded using an array of regular cameras, each of which views the object from a different perspective. The more cameras that are used, the more refined the final holographic presentation will appear.

That information is then encoded onto a fast-pulsed laser beam, which interferes with another beam that serves as a reference. The resulting interference pattern is written into the photorefractive polymer, creating and storing the image. Each laser pulse records an individual "hogel" in the polymer. A hogel (short for holographic pixel) is the three-dimensional version of a pixel, the basic units that make up the picture.

The hologram fades away by natural dark decay after a couple of minutes or seconds depending on experimental parameters. Or it can be erased by recording a new 3D image, creating a new diffraction structure and deleting the old pattern.

Peyghambarian explained: "Let's say I want to give a presentation in New York. All I need is an array of cameras here in my Tucson office and a fast Internet connection. At the other end, in New York, there would be the 3D display using our laser system. Everything is fully automated and controlled by computer. As the image signals are transmitted, the lasers inscribe them into the screen and render them into a three-dimensional projection of me speaking."

The overall recording setup is insensitive to vibration because of the short pulse duration and therefore suited for industrial environment applications without any special need for vibration, noise or temperature control.

One of the system's major hallmarks never achieved before is what Peyghambarian's group calls full parallax: "As you move your head left and right or up and down, you see different perspectives. This makes for a very life-like image. Humans are used to seeing things in 3D."

The work is a result of a collaboration between the UA and Nitto Denko Technical, or NDT, a company in Oceanside, Calif. NDT provided the polymer sample and media preparation. "We have made major advances in photorefractive polymer film fabrication that allow for the very interesting 3D images obtained in our upcoming Nature article," said, Michiharu Yamamoto, vice president at NDT and co-author of the paper.

Potential applications of holographic telepresence include advertising, updatable 3D maps and entertainment. Telemedicine is another potential application: "Surgeons at different locations around the world can observe in 3D, in real time, and participate in the surgical procedure," the authors wrote.

The system is a major advance over computer-generated holograms, which place high demands on computing power and take too long to be generated to be practical for any real-time applications.

Currently, the telepresence system can present in one color only, but Peyghambarian and his team have already demonstrated multi-color 3D display devices capable of writing images at a faster refresh rate, approaching the smooth transitions of images on a TV screen. These devices could be incorporated into a telepresence set-up in near future.
-end-
A video featuring this research will be available here: http://www.uanews.org/node/35109

Please note that this URL is not active yet, but will be once the embargo has lifted.

TV editors: For B-Roll, please contact Daniel Stolte, The University of Arizona, Office of Communications, at 520-626-4402 or stolte@email.arizona.edu

The research was funded through grants from the Air Force Office of Scientific Research, the Defense Advanced Research Projects Agency and the National Science Foundation's Engineering Research Center on Integrated Access Networks.

University of Arizona

Related Polymer Articles from Brightsurf:

Impurities enhance polymer LED efficiencies
New research published in EPJ B reveals that the higher-than-expected efficiency of PLEDs can be reached through interactions between triplet excitons, and impurities embedded in their polymer layers.

Safety of bioabsorbable polymer against durable polymer DES in high-risk PCI patients
A novel study sought to reveal whether drug-eluting stents (DES) coated with bioabsorbable polymer (BP) presented a safety advantage without compromising efficacy compared to durable polymer (DP) formulations.

Polymer membranes could benefit from taking a dip
A new technique developed by a team including researchers from the US Department of Energy (DOE)'s Argonne National Laboratory makes atomic layer deposition possible on nearly any membrane.

New polymer material may help batteries become self-healing, recyclable
Lithium-ion batteries are notorious for developing internal electrical shorts that can ignite a battery's liquid electrolytes, leading to explosions and fires.

Researchers add order to polymer gels
Gel-like materials have a wide range of applications, especially in chemistry and medicine.

Bundlemers (new polymer units) could transform industries
From tires to clothes to shampoo, many ubiquitous products are made with polymers, large chain-like molecules made of smaller sub-units, called monomers, bonded together.

New synthetic polymer degradable under very mild acidic conditions
A new type of degradable synthetic polymer was prepared by Rh-catalyzed three-component polymerization of a bis(diazocarbonyl) compound, bis(1,3-diketone), and tetrahydrofuran.

New polymer tackles PFAS pollution
toxic polyfluorinated alkyl substances (PFAS) pollution -- commonly used in non-stick and protective coatings, lubricants and aviation fire-fighting foams -- can now be removed from the environment thanks to a new low-cost, safe and environmentally friendly polymer.

New polymer films conduct heat instead of trapping it
MIT engineers have flipped the picture of the standard polymer insulator, by fabricating thin polymer films that conduct heat -- an ability normally associated with metals.

Polymer reversibly glows white when stretched
Polymers that change their appearance in response to mechanical forces can warn of damage developing in a material before the stress causes structural failure.

Read More: Polymer News and Polymer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.