The cerebellum as navigation assistant

November 03, 2011

The cerebellum is far more intensively involved in helping us navigate than previously thought. To move and learn effectively in spatial environments our brain, and particularly our hippocampus, creates a "cognitive" map of the environment. The cerebellum contributes to the creation of this map through altering the chemical communication between its neurones. If this ability is inactivated, the brain is no longer able to to create an effective spatial representation and thus navigation in an environment becomes impaired. The details of these observations were recently published in Science by the Ruhr University neuroscientist, Marion André who is a student of the International Graduate School of Neuroscience( IGSN), along with her colleagues in France.

A cognitive map in the hippocampus

In order to navigate efficiently in an environment, we need to create and maintain a reliable internal representation of the external world. A key region enabling such representation is the hippocampus which contains specialized pyramidal neurons named place cells. Each place cell is activated at specific location of the environment and gives dynamic information about self-location relative to the external world. These neurons thus generate a cognitive map in the hippocampal system through the integration of multi sensory inputs combining external information (such as visual, auditory, olfactory and tactile cues) and inputs generated by self-motion (i.e. optic flow, proprioceptive and vestibular information).

Decisive: synaptic plasticity

Our ability to navigate also relies on the potential to use this cognitive map to form an optimal trajectory toward a goal. The cerebellum, a foliate region based at the back of the brain, has been recently shown to participate in the formation of the optimal trajectory. This structure contains neurons that are able to increase or decrease their chemical communication, a mechanism called synaptic plasticity. A decrease in the synaptic transmission of the cerebellar neurons, named long-term depression (LTD) participates in the optimization of the path toward a goal.

No orientation without LTD

Using transgenic mice that had a mutation impairing exclusively LTD of the cerebellar neurons, the neuroscientists were able to show that the cerebellum participates also in the formation of the hippocampal cognitive map. Indeed mice lacking this form of cerebellar plasticity were unable to build a reliable cognitive representation of the environment when they had to use self-motion information. Consequently, they were unable to navigate efficiently towards a goal in the absence of external information (for instance in the dark). This work highlights for the first time an unsuspected function of the cerebellum in shaping the representation of our body in space.
-end-
Bibliographic record

Christelle Rochefort, Arnaud Arabo, Marion André, Bruno Poucet, Etienne Save, and Laure Rondi-Reig: Cerebellum Shapes Hippocampal Spatial Code. Science, 21 October 2011: 385-389. DOI:10.1126/science.1207403
Internet: http://www.sciencemag.org/content/334/6054/385.full?sid=4b397dcb-4e01-4fbb-9168-d88df769e65a

Further Information

Dr. Marion André, Abteilung für Neurophysiologie, Medizinsche Fakultät der RUB und International Graduate School of Neuroscience (IGSN) der RUB, Tel. +49 234 32 22042
Prof. Dr. Denise Manahan-Vaughan, Leiterin des Lehrstuhls für Neurophysiologie und Direktorin/Studiendekanin der IGSN, Tel. +49 234 32 22042, denise.manahan-vaughan@rub.de

IGSN: http://www.ruhr-uni-bochum.de/igsn/index.shtml

Editor: Jens Wylkop

Ruhr-University Bochum

Related Neurons Articles from Brightsurf:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.

Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.

A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.

Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.

Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.

Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.

The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.

Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.

How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.

A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.

Read More: Neurons News and Neurons Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.