Brain anatomy differences between autistic and typically developing individuals are indistinguishable

November 03, 2014

BEER-SHEVA, Israel...November 4, 2014 -- In the largest MRI study to date, researchers from Ben-Gurion University of the Negev and Carnegie Mellon University have shown that the brain anatomy in MRI scans of people with autism above age six is mostly indistinguishable from that of typically developing individuals and, therefore, of little clinical or scientific value.

The study, "Anatomical Abnormalities in Autism?" was just published in the prestigious Oxford journal Cerebral Cortex.

"Our findings offer definitive answers regarding several scientific controversies about brain anatomy, which have occupied autism research for the past 10 to 15 years," says Dr. Ilan Dinstein of BGU's Departments of Psychology and Brain and Cognitive Sciences. "Previous hypotheses suggesting that autism is associated with larger intra-cranial gray matter, white matter and amygdala volumes, or smaller cerebellar, corpus callosum and hippocampus volumes were mostly refuted by this new study."

The researchers used data from the Autism Brain Imaging Data Exchange (ABIDE), which provides an unprecedented opportunity to conduct large-scale comparisons of anatomical MRI scans across autism and control groups and resolve many outstanding questions. This recently- released database is a worldwide collection of MRI scans from over 1,000 individuals (half with autism and half controls) ages six to 35 years old.

"In the study we performed very detailed anatomical examinations of the scans, which included dividing each brain into over 180 regions of interest and assessing multiple anatomical measures such as the volume, surface area and thickness of each region," Dinstein explains.

The researchers then examined how the autism and control groups differed with respect to each region and also with respect to groups of regions using more complex analyses.

"The most striking finding here was that anatomical differences within both the control group and the autistic group was immense and greatly overshadowed minute differences between the two groups," Dinstein explains. "For example, individuals in the control group differ by 80 to 90 percent in their brain volumes, while differences in brain volume across autism and control groups differed by two to three percent at most. This led us to the conclusion that anatomical measures of brain volume or surface areas do not offer much information regarding the underlying mechanism or pathology of Autistic Spectrum Disorder (ASD)," he states.

"These sobering results suggest that autism is not a disorder that is associated with specific anatomical pathology and as a result, anatomical measures alone are likely to be of low scientific and clinical significance for identifying children, adolescents and adults with ASD, or for elucidating their neuropathology.

Dinstein believes that more complex explanations involving combinations of measures in more homogeneous sub-groups are likely to be the answer. "Expecting to find a single answer for the entire ASD population is naïve. We need to move on to thinking about how to split up this very heterogeneous group of disorders into more meaningful biologically-relevant subgroups," he says.

This conclusion stands in sharp contrast to numerous reports of significant anatomical differences described by smaller studies, which have typically included comparisons of 40 to 50 individuals. "The problem with small samples, large within-group heterogeneity, and a scientific bias to report only positive findings, is that small samples are likely to yield significant differences across autism and control groups in a few of the 180 brain regions," Dinstein explains.

"In such a situation one would expect that each study would find significant differences in different brain areas and that findings will be very inconsistent across studies," he says. "This is exactly what you see when you examine the autism anatomy literature from the last decade or so. Our study simply explains why this has been happening and puts an end to several ensuing debates."
-end-
Other researchers who participated in this study include Dr. Sigal Berman of BGU's Department of Industrial Engineering and Management, Prof. Marlene Behrmann of Carnegie Mellon University's Department of Psychology, and Shlomi Haar, a doctoral student in BGU's Department of Brain and Cognitive Sciences.

This work was supported by Simons Foundation SFARI grant 177638 (M.B. and I.D.).

American Associates, Ben-Gurion University of the Negev

American Associates, Ben-Gurion University of the Negev (AABGU) plays a vital role in sustaining David Ben-Gurion's vision, creating a world-class institution of education and research in the Israeli desert, nurturing the Negev community and sharing the University's expertise locally and around the globe. With some 20,000 students on campuses in Beer-Sheva, Sede Boqer and Eilat in Israel's southern desert, BGU is a university with a conscience, where the highest academic standards are integrated with community involvement, committed to sustainable development of the Negev. AABGU is headquartered in Manhattan and has nine regional offices throughout the U.S. For more information, please visit http://www.aabgu.org.

American Associates, Ben-Gurion University of the Negev

Related Autism Articles from Brightsurf:

Autism-cholesterol link
Study identifies genetic link between cholesterol alterations and autism.

National Autism Indicators Report: the connection between autism and financial hardship
A.J. Drexel Autism Institute released the 2020 National Autism Indicators Report highlighting the financial challenges facing households of children with autism spectrum disorder (ASD), including higher levels of poverty, material hardship and medical expenses.

Autism risk estimated at 3 to 5% for children whose parents have a sibling with autism
Roughly 3 to 5% of children with an aunt or uncle with autism spectrum disorder (ASD) can also be expected to have ASD, compared to about 1.5% of children in the general population, according to a study funded by the National Institutes of Health.

Adulthood with autism
The independence that comes with growing up can be scary for any teenager, but for young adults with autism spectrum disorder and their caregivers, the transition from adolescence to adulthood can seem particularly daunting.

Brain protein mutation from child with autism causes autism-like behavioral change in mice
A de novo gene mutation that encodes a brain protein in a child with autism has been placed into the brains of mice.

Autism and theory of mind
Theory of mind, or the ability to represent other people's minds as distinct from one's own, can be difficult for people with autism.

Potential biomarker for autism
A study of young children with autism spectrum disorder published in JNeurosci reveals altered brain waves compared to typically developing children during a motor control task.

Autism often associated with multiple new mutations
Most autism cases are in families with no previous history of the disorder.

State laws requiring autism coverage by private insurers led to increases in autism care
A new study led by researchers at the Johns Hopkins Bloomberg School of Public Health has found that the enactment of state laws mandating coverage of autism spectrum disorder (ASD) was followed by sizable increases in insurer-covered ASD care and associated spending.

Autism's gender patterns
Having one child with autism is a well-known risk factor for having another one with the same disorder, but whether and how a sibling's gender influences this risk has remained largely unknown.

Read More: Autism News and Autism Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.