Forests lose essential nitrogen in surprising way, find scientists

November 03, 2014

ITHACA, N.Y. - Even during summer dry spells, some patches of soil in forested watersheds remain waterlogged. Researchers have discovered that these patches act as hot spots of microbial activity that remove nitrogen from groundwater and return it to the atmosphere, as reported in a Nov. 3 article in Proceedings of the National Academy of Sciences.

Nitrogen is a critically important nutrient for plant growth in the forest. Denitrification removes this nutrient from the ecosystem and can reduce the growth and productivity of the forest.

The research contributes to a better understanding of how and where nitrogen is processed in the environment. ''Nitrogen is the nutrient that most often limits rates of plant growth, yet the cycling and fate of nitrogen in forests has been difficult to track, especially when it is lost in gaseous form,'' explains, co-author Christine Goodale, associate professor of ecology and evolutionary biology at Cornell University.

"This study will enable us to better understand the fate of nitrogen in forests," adds Sarah Wexler, who led the research while a postdoctoral associate at the Department of Ecology and Evolutionary Biology at Cornell, now working in the School of Environmental Sciences at the University of East Anglia, UK.

The research took place in the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, where the atmosphere deposits five to seven pounds per acre of nitrogen per year. The forest is part of the National Science Foundation's Long Term Ecological Research program.

At sites throughout the forest, the research team measured the presence of nitrate, a form of nitrogen that is highly mobile and reactive in the environment, and determined whether the nitrate is a result of atmospheric deposition or nitrification. Wexler says the researchers differentiated sources of nitrate and show that some of the nitrate was lost to the atmosphere by looking at nitrate at the atomic level using naturally occurring stable isotopes.

"The isotopic composition of the nitrogen and oxygen in nitrate provides a natural way to directly track the details of nitrogen cycling. Finding isotopic evidence for denitrification in shallow groundwater in summer, when the groundwater was not draining to the stream, may explain both the reduction in stream nitrogen export and why denitrification has not been seen in the stream itself,'' says Wexler.

The researchers determined the importance of denitrification in patches of shallow groundwater, which have largely been overlooked control points for nitrogen loss from temperate forested watersheds. "The importance of these fragmented patches to the nitrogen cycle had not been properly appreciated before this study," says co-author Kevin McGuire, associate director of the Virginia Water Resources Research Center in the College of Natural Resources and Environment at Virginia Tech.

Most nitrogen is deposited by rain, and temperate forests receive much larger inputs of nitrogen from the atmosphere than they export to streams. Once nitrogen leaves the forest in a stream, it can become a water pollutant. Denitrification removes this pollutant and can therefore improve water quality in downstream lakes and estuaries. "In some ecosystems, there have been long-term declines in stream water export of nitrogen when inputs have remained elevated," Goodale says.

''Understanding the fate of this nitrogen has been a challenge because denitrification - a gaseous loss of nitrogen to the atmosphere - is notoriously difficult to measure," says co-author Peter Groffman, an expert on denitrification at the Cary Institute of Ecosystem Studies. "Climate change, especially increases in precipitation, could be increasing the amount of waterlogged patches in the forest. Thus climate change could be increasing denitrification and its effects on forest growth and productivity -- a negative outcome -- and on water quality - a positive outcome."
-end-
The study will be available on Nov. 3 here: http://www.pnas.org/content/early/recent

Photo: https://cornell.box.com/goodale

Cornell University

Related Climate Change Articles from Brightsurf:

Are climate scientists being too cautious when linking extreme weather to climate change?
Climate science has focused on avoiding false alarms when linking extreme events to climate change.

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.

Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.

Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.

Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.

A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.

Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).

Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.

Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.

Read More: Climate Change News and Climate Change Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.