Berkeley Lab scientists ID new driver behind Arctic warming

November 03, 2014

Scientists have identified a mechanism that could turn out to be a big contributor to warming in the Arctic region and melting sea ice.

The research was led by scientists from the US Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab). They studied a long-wavelength region of the electromagnetic spectrum called far infrared. It's invisible to our eyes but accounts for about half the energy emitted by the Earth's surface. This process balances out incoming solar energy.

Despite its importance in the planet's energy budget, it's difficult to measure a surface's effectiveness in emitting far-infrared energy. In addition, its influence on the planet's climate is not well represented in climate models. The models assume that all surfaces are 100 percent efficient in emitting far-infrared energy.

That's not the case. The scientists found that open oceans are much less efficient than sea ice when it comes to emitting in the far-infrared region of the spectrum. This means that the Arctic Ocean traps much of the energy in far-infrared radiation, a previously unknown phenomenon that is likely contributing to the warming of the polar climate.

Their research appears this week in the online early edition of the Proceedings of the National Academy of Sciences.

"Far-infrared surface emissivity is an unexplored topic, but it deserves more attention. Our research found that non-frozen surfaces are poor emitters compared to frozen surfaces. And this discrepancy has a much bigger impact on the polar climate than today's models indicate," says Daniel Feldman, a scientist in Berkeley Lab's Earth Sciences Division and lead author of the paper.

"Based on our findings, we recommend that more efforts be made to measure far-infrared surface emissivity. These measurements will help climate models better simulate the effects of this phenomenon on the Earth's climate," Feldman says.

He conducted the research with Bill Collins, who is head of the Earth Sciences Division's Climate Sciences Department. Scientists from the University of Colorado, Boulder and the University of Michigan also contributed to the research.

The far-infrared region of the electromagnetic spectrum spans wavelengths that are between 15 and 100 microns (a micron is one-millionth of a meter). It's a subset of infrared radiation, which spans wavelengths between 5 and 100 microns. In comparison, visible light, which is another form of electromagnetic radiation, has a much shorter wavelength of between 390 and 700 nanometers (a nanometer is one billionth of a meter).

Many of today's spectrometers cannot detect far-infrared wavelengths, which explains the dearth of field measurements. Because of this, scientists have extrapolated the effects of far-infrared surface emissions based on what's known at the wavelengths measured by today's spectrometers.

Feldman and colleagues suspected this approach is overly simplistic, so they refined the numbers by reviewing published studies of far-infrared surface properties. They used this information to develop calculations that were run on a global atmosphere climate model called the Community Earth System Model, which is closely tied to the Department of Energy's Accelerated Climate Model for Energy (ACME).

The simulations revealed that far-infrared surface emissions have the biggest impact on the climates of arid high-latitude and high-altitude regions.

In the Arctic, the simulations found that open oceans hold more far-infrared energy than sea ice, resulting in warmer oceans, melting sea ice, and a 2-degree Celsius increase in the polar climate after only a 25-year run.

This could help explain why polar warming is most pronounced during the three-month winter when there is no sun. It also complements a process in which darker oceans absorb more solar energy than sea ice.

"The Earth continues to emit energy in the far infrared during the polar winter," Feldman says. "And because ocean surfaces trap this energy, the system is warmer throughout the year as opposed to only when the sun is out."

The simulations revealed a similar warming affect on the Tibetan plateau, where there was five percent less snowpack after a 25-year run. This means more non-frozen surface area to trap far-infrared energy, which further contributes to warming in the region.

"We found that in very arid areas, the extent to which the surface emits far-infrared energy really matters. It controls the thermal energy budget for the entire region, so we need to measure and model it better," says Feldman
The research was supported by NASA and the Department of Energy's Office of Science.

DOE/Lawrence Berkeley National Laboratory

Related Sea Ice Articles from Brightsurf:

2020 Arctic sea ice minimum at second lowest on record
NASA and the National Snow and Ice Data Center (NSIDC) at the University of Colorado Boulder shows that the 2020 minimum extent, which was likely reached on Sept.

Sea ice triggered the Little Ice Age, finds a new study
A new study finds a trigger for the Little Ice Age that cooled Europe from the 1300s through mid-1800s, and supports surprising model results suggesting that under the right conditions sudden climate changes can occur spontaneously, without external forcing.

How much will polar ice sheets add to sea level rise?
Over 99% of terrestrial ice is bound up in the ice sheets covering Antarctic and Greenland.

A snapshot of melting Arctic sea ice during the summer of 2018
A study appearing July 29 in the journal Heliyon details the changes that occurred in the Arctic in September of 2018, a year when nearly 10 million kilometers of sea ice were lost throughout the summer.

Antarctic penguins happier with less sea ice
Researchers have been surprised to find that Adélie penguins in Antarctica prefer reduced sea-ice conditions, not just a little bit, but a lot.

Seasonal sea ice changes hold clues to controlling CO2 levels, ancient ice shows
New research has shed light on the role sea ice plays in managing atmospheric carbon dioxide levels.

Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.

Antarctic sea ice loss explained in new study
Scientists have discovered that the summer sea ice in the Weddell Sea sector of Antarctica has decreased by one million square kilometres -- an area twice the size of Spain -- in the last five years, with implications for the marine ecosystem.

Antarctic sea-ice models improve for the next IPCC report
All the new coupled climate models project that the area of sea ice around Antarctica will decline by 2100, but the amount of loss varies considerably between the emissions scenarios.

Earth's glacial cycles enhanced by Antarctic sea-ice
A 784,000 year climate simulation suggests that Southern Ocean sea ice significantly reduces deep ocean ventilation to the atmosphere during glacial periods by reducing both atmospheric exposure of surface waters and vertical mixing of deep ocean waters; in a global carbon cycle model, these effects led to a 40 ppm reduction in atmospheric CO2 during glacial periods relative to pre-industrial level, suggesting how sea ice can drive carbon sequestration early within a glacial cycle.

Read More: Sea Ice News and Sea Ice Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to