New tool could help reshape the limits of synthetic biology

November 03, 2014

Note: A graphic of the "telomerator" being inserted into a circular synthetic chromosome is available at: https://nyumc.box.com/s/zpticyfat5479vcnl9y8

NYU Langone yeast geneticists report they have developed a novel tool -- dubbed "the telomerator" -- that could redefine the limits of synthetic biology and advance how successfully living things can be engineered or constructed in the laboratory based on an organism's genetic, chemical base-pair structure.

Synthetic biologists aim to use such "designer" microorganisms to produce novel medicines, nutrients, and biofuels.

In a report in the Proceedings of the National Academy of Sciences online Nov. 3, NYU Langone scientists say the telomerator should also improve study of yeast genetics, the model microorganism for human genetics, and help researchers determine how genes, as well as the chromosomes housing them, interact with each other.

The research team, led by Jef Boeke, PhD, a professor and director of NYU Langone's Institute for Systems Genetics, built the telomerator to convert circular chromosomes into linear ones. Boeke says this better resembles the natural structure of more complex organisms, including humans. Comprising about 1,500 chemical base pairs linked together, the man-made piece of telomerator code can be inserted as a single unit at any position on circular DNA and almost anywhere among a chromosome's other genes, whose base pairs can number into the hundreds of thousands.

"Our new telomerator resolves a serious and practical issue facing biologists everywhere by helping us experiment with synthetic genes in ways that are more realistic and more closely aligned to the biology of higher organisms, such as humans," says Boeke. "Until now, we've relied on synthesizing functional and stable yeast chromosomes in a circular format -- with their telomeres cut off -- so they can be uniformly reproduced for easy experimentation within bacteria, whose chromosomes are circular in shape," he says.

What makes the telomerator particularly effective, researchers say, is its precise capacity to add buffering chromosome endings, or telomeres, to newly linearized yeast chromosomes.

Moreover, the telomerator, which took Boeke and lead study investigator Leslie Mitchell, PhD, two years to construct and test, allows researchers to study how a gene's position or placement on a chromosome affects the gene's function.

The key components of the telomerator are its telomere seed sequences, which are exposed when the telomerator "cassette" -- its packaged components -- is activated.

To test the device, Mitchell inserted a telomerator cassette at 54 different locations on a circular synthetic yeast chromosome of about 90,000 base pairs and tested whether the chromosome could be segmented and straightened at each position. Researchers compared the process to a clock dial, in which they could insert the telomerator at any "hour" on the clock face to break the circle and yield 12 different timelines, but all of equal length. Colonies grew for 51 of the linear yeast chromosomes, failing only in chromosomes where essential genes were placed too close to the telomere ends.

Additional testing confirmed that the modified yeast chromosomes were in a linear format and of the precise length predicted by researchers.

Boeke's research is part of an international effort to manufacture all the yeast chromosomes, threadlike structures that carry genes in the nucleus of all plant and animal cells, and move genetic research one step closer to constructing the organism's entire functioning genome. Earlier this year, Boeke's team reported building the first of the 16 yeast chromosomes, which they call synIII, and successfully incorporating it into brewer's yeast, known scientifically as Saccharomyces cerevisiae.
-end-
Funding support for these latest experiments was provided by National Science Foundation grant MCB-0718846, Defense Advanced Research Project Agency contract N66001-12-C, and a postdoctoral fellowship grant from the Natural Sciences and Engineering Research Council of Canada.

For more information, go to:

http://www.med.nyu.edu/biosketch/boekej01

http://syntheticyeast.org/

About NYU Langone Medical Center:

NYU Langone Medical Center, a world-class, patient-centered, integrated academic medical center, is one of the nation's premier centers for excellence in clinical care, biomedical research, and medical education. Located in the heart of Manhattan, NYU Langone is composed of four hospitals -- Tisch Hospital, its flagship acute care facility; Rusk Rehabilitation; the Hospital for Joint Diseases, the Medical Center's dedicated inpatient orthopaedic hospital; and Hassenfeld Children's Hospital, a comprehensive pediatric hospital supporting a full array of children's health services across the Medical Center -- plus the NYU School of Medicine, which since 1841 has trained thousands of physicians and scientists who have helped to shape the course of medical history. The Medical Center's tri-fold mission to serve, teach, and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education, and research. For more information, go to http://www.NYULMC.org, and interact with us on Facebook, Twitter, and YouTube.

Media Contact:

David March
212 .404.3528│david.march@nyumc.org

NYU Langone Medical Center / New York University School of Medicine

Related Chromosomes Articles from Brightsurf:

Cancer's dangerous renovations to our chromosomes revealed
Cancer remodels the architecture of our chromosomes so the disease can take hold and spread, new research reveals.

Y chromosomes of Neandertals and Denisovans now sequenced
An international research team led by Martin Petr and Janet Kelso of the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, has determined Y chromosome sequences of three Neandertals and two Denisovans.

Female chromosomes offer resilience to Alzheimer's
Women live longer than men with Alzheimer's because their sex chromosomes give them genetic protection from the ravages of the disease.

New protein complex gets chromosomes sorted
Researchers from the University of Tsukuba have identified a novel protein complex that regulates Aurora B localization to ensure that chromosomes are correctly separated during cell division.

Breaking up is hard to do (especially for sex chromosomes)
A team of scientists at the Sloan Kettering Institute has discovered how the X and Y chromosomes find one another, break, and recombine during meiosis even though they have little in common.

Exchange of arms between chromosomes using molecular scissors
The CRISPR/Cas molecular scissors work like a fine surgical instrument and can be used to modify genetic information in plants.

How small chromosomes compete with big ones for a cell's attention
Scientists at the Sloan Kettering Institute have solved the puzzle of how small chromosomes ensure that they aren't skipped over during meiosis, the process that makes sperm and egg.

GPS for chromosomes: Reorganization of the genome during development
The spatial arrangement of genetic material within the cell nucleus plays an important role in the development of an organism.

Extra chromosomes in cancers can be good or bad
Extra copies of chromosomes are typical in cancerous tumor cells, but researchers taking a closer look find that some extra copies promote cancer growth while others actually inhibit cancer metastasis.

X marks the spot: recombination in structurally distinct chromosomes
A recent study from the laboratory of Stowers Investigator Scott Hawley, PhD, has revealed more details about how the synaptonemal complex performs its job, including some surprising subtleties in function.

Read More: Chromosomes News and Chromosomes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.