NASA lining up ICESat-2's laser-catching telescope

November 03, 2014

To catch individual laser photons that have travelled more than 600 miles from a satellite to Earth and back, the satellite's telescope needs to be perfectly positioned. Last week, engineers and technicians at NASA's Goddard Space Flight Center in Greenbelt, Maryland, fitted the mirrored telescope of the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) into its place.

It's the latest milestone in the assembly of a satellite that will measure the elevation of Earth from space, helping scientists track changes to Earth's ice-covered poles, take stock of forests, map ocean surfaces and characterize clouds.

ICESat-2's single instrument is the Advanced Topographic Laser Altimeter System, or ATLAS. Once in orbit, ATLAS will time how long it takes for light from its green lasers to travel to Earth's surface and back. By analyzing those times with computer programs and determining the distance light travels, scientists can calculate surface elevation.

In a Goddard cleanroom, teams are working in parallel on two sections of ATLAS: the box structure, which holds electronics that control the instrument, and the optical bench, which supports the instrument's lasers, mirrors, and the 2.6-foot, 46-pound beryllium telescope that collects light.

Each ATLAS laser pulse contains more than 200 trillion photons, but only a dozen or so return to the telescope, where they're sent via optical fibers to the instrument's detectors. To catch those few photons, the telescope and its associated equipment, called the Receiver Telescope Assembly or RTA, need to align perfectly to the laser.

The telescope's base is bolted in place by three metal feet, which are required to fit flush with the bench to within ten thousandths of an inch, said Bente Eegholm, the RTA lead at Goddard. The technicians, she noted, beat that requirement. The team had designed a multi-step procedure to make that fit. At the heart were two plates - one with three 1-inch spheres on top, the other with three cone-shaped grooves machined to balance evenly on the spheres.

The cleanroom crew used a precision crane to lift the RTA out of its box, setting it down temporarily on low scaffolding where they could attach the grooved plate to the base of a telescope. They lifted the RTA again, this time positioning it inches over the optical bench and setting it atop a mount with the sphere plate.

"Using that design, the telescope rests perfectly," said Carol Lilly, integration and testing manager for the ATLAS instrument at Goddard. Knowing the alignment was correct, the team slowly lowered the telescope assembly and bolted it into place.

The ATLAS telescope team has been testing the optical performance of the telescope mirror since it arrived at Goddard on March 25, 2014, Eegholm said. They investigated how it worked with other parts of the instrument. They designed a way of testing its optical performance in a thermal vacuum chamber, snaking in fiber optics so they could send light through the RTA while it cycled through hot and cold temperatures, testing how well it would perform in space-like conditions.

Work assembling the ATLAS instrument began in Spring 2014. In addition to assembling and testing some of the first mirrors and lenses that will direct the laser out of the bench, the ATLAS team has also been attaching electronics to the box-shaped frame of the instrument. Earlier this fall, the ATLAS team conducted a 'fit check,' lowering the bench into place on the box to see how the connections will work together.

Once all of the ATLAS components are in place and tested, the instrument will be transported to Orbital Sciences Corp. in Gilbert, Arizona, where it will be attached to the spacecraft. ICESat-2 will then be shipped to Vandenberg Air Force Base in California for launch.
For more information about ICESat-2, visit:

NASA/Goddard Space Flight Center

Related Photons Articles from Brightsurf:

An electrical trigger fires single, identical photons
Researchers at Berkeley Lab have found a way to generate single, identical photons on demand.

Single photons from a silicon chip
Quantum technology holds great promise: Quantum computers are expected to revolutionize database searches, AI systems, and computational simulations.

Physicists "trick" photons into behaving like electrons using a "synthetic" magnetic field
Scientists have discovered an elegant way of manipulating light using a ''synthetic'' Lorentz force -- which in nature is responsible for many fascinating phenomena including the Aurora Borealis.

Scientists use photons as threads to weave novel forms of matter
New research from the University of Southampton has successful discovered a way to bind two negatively charged electron-like particles which could create opportunities to form novel materials for use in new technological developments.

The nature of nuclear forces imprinted in photons
IFJ PAN scientists together with colleagues from the University of Milano (Italy) and other countries confirmed the need to include the three-nucleon interactions in the description of electromagnetic transitions in the 20O atomic nucleus.

Pushing photons
UC Santa Barbara researchers continue to push the boundaries of LED design a little further with a new method that could pave the way toward more efficient and versatile LED display and lighting technology.

Photons and electrons one on one
The dynamics of electrons changes ever so slightly on each interaction with a photon.

An advance in molecular moviemaking shows how molecules respond to two photons of light
Some of the molecules' responses were surprising and others had been seen before with other techniques, but never in such detail or so directly, without relying on advance knowledge of what they should look like.

The imitation game: Scientists describe and emulate new quantum state of entangled photons
A research team from ITMO University, MIPT and Politecnico di Torino, has predicted a novel type of topological quantum state of two photons.

What if we could teach photons to behave like electrons?
The researchers tricked photons - which are intrinsically non-magnetic - into behaving like charged electrons.

Read More: Photons News and Photons Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to