Plasma: Casimir and Yukawa mesons

November 03, 2014

New York | Heidelberg, 3 November 2014 -- A new theoretical work establishes a long-sought-after connection between nuclear particles and electromagnetic theories. Its findings suggest that there is an equivalence between generalised Casimir forces and those that are referred to as weak nuclear interactions between protons and neutrons. The Casimir forces are due to the quantisation of electromagnetic fluctuations in vacuum, while the weak nuclear interactions are mediated by subatomic scale particles, originally called mesons by Yukawa. These findings by Barry Ninham from the Australian National University, in Canberra, and European colleagues, have now been published in EPJ D.

The study focuses on two perfectly reflecting model plates, separated by any non-zero density plasma, i.e. a charged gas which may contain electrons only or electrons and positrons. The authors extended the formulae for the Casimir force between these ideal metal plates to include interactions across a plasma and temperature, explicitly.

The ensuing formulae show that long-range electromagnetic fluctuations are qualitatively different from those across a vacuum. They also shed some new light on measurements of Casimir forces between metal plates, an issue that has long puzzled physicists.

In addition, the authors revisited and reworked the formulae for the original Casimir forces across a vacuum to correctly account for the temperature. At extremely small distances - also tantamount to very high temperatures - the formulae are equivalent to the effect of the force of an electron-positron plasma in the space between the interacting ideal plates, according to the study.

In this context, the mesons of the nuclear interaction theory become plasmons, which are collective excitations in the sea of electron-positron pairs in the vacuum. If the correspondence proves correct, the implications are profound for broad areas ranging from physical chemistry to nanotechnology.
-end-
Reference: Ninham, B.W. et al. (2014). Casimir Forces in a Plasma: Possible Connections to Yukawa Potentials. European Physical Journal D. DOI 10.1140/epjd/e2014-50484-8

For more information visit: http://www.epj.org

The full-text article is available to journalists on request.

Springer

Related Plasma Articles from Brightsurf:

Plasma treatments quickly kill coronavirus on surfaces
Researchers from UCLA believe using plasma could promise a significant breakthrough in the fight against the spread of COVID-19.

Fighting pandemics with plasma
Scientists have long known that ionized gases can kill pathogenic bacteria, viruses, and some fungi.

Topological waves may help in understanding plasma systems
A research team has predicted the presence of 'topologically protected' electromagnetic waves that propagate on the surface of plasmas, which may help in designing new plasma systems like fusion reactors.

Plasma electrons can be used to produce metallic films
Computers, mobile phones and all other electronic devices contain thousands of transistors, linked together by thin films of metal.

Plasma-driven biocatalysis
Compared with traditional chemical methods, enzyme catalysis has numerous advantages.

How bacteria protect themselves from plasma treatment
Considering the ever-growing percentage of bacteria that are resistant to antibiotics, interest in medical use of plasma is increasing.

A breakthrough in the study of laser/plasma interactions
Researchers from Lawrence Berkeley National Laboratory and CEA Saclay have developed a particle-in-cell simulation tool that is enabling cutting-edge simulations of laser/plasma coupling mechanisms.

Researchers turn liquid metal into a plasma
For the first time, researchers at the University of Rochester's Laboratory for Laser Energetics (LLE) have found a way to turn a liquid metal into a plasma and to observe the temperature where a liquid under high-density conditions crosses over to a plasma state.

How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.

Give it the plasma treatment: strong adhesion without adhesives
A Japanese research team at Osaka University used plasma treatment to make fluoropolymers and silicone resin adhere without any adhesives.

Read More: Plasma News and Plasma Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.