PNAS: From HIV to cancer, IL-37 regulates immune system

November 03, 2014

A University of Colorado Cancer Center study published in this month's Proceedings of the National Academy of Sciences describes the activity of a recently discovered communication molecule of the body's immune system, Interleukin 37 or IL-37. It has been known to limit inflammation and the current study reports its activity in the adaptive immune system: IL-37 inhibits the ability of the immune system to recognize and target new antigens.

"Knowing this mechanism that underlies IL-37's effect on the immune system now allows us to study IL-37 function and perhaps dysfunction in a wide range of diseases," says Mayumi Fujita, MD, PhD, investigator at the University of Colorado Cancer Center, associate professor in the CU School of Medicine Department of Dermatology, and the paper's senior author.

For example, knowing that IL-37 helps to create overall immune system sensitivity could allow researchers to manipulate IL-37 levels to sensitize the immune system to recognize and target tumor tissue, or desensitize the immune system in auto-immune conditions like rheumatoid arthritis in which the immune system acts over-aggressively toward healthy tissue.

IL-37 is one of the 38 known interleukins that carry messages in the immune system. The current study shows that IL-37 works through the regulation of dendritic cells, which trap, process and present new antigens. Dendritic cells are formed in bone marrow and migrate to parts of the body that commonly come in contact with new antigens, for example skin or the lining of the gut. Immature dendritic cells are in a state of readiness, waiting at these common points of first contact to trap new antigens. Mature dendritic cells trap an antigen and then migrate with the antigen to lymph nodes where they work to coordinate the immune response to the new antigen.

The current study shows that IL-37 encourages the formation of semi-mature dendritic cells that migrate to lymph nodes but fail to present antigens in a way that create an immune response. It is as if IL-37 helps to maintain dendritic cells in a state of semi-immature readiness, rather than allowing them to become sensitized to new antigens.

In fact, the study showed a cascade of diminished immune system response in mice with IL-37, including lower CD40, IL-1b, IL-6 and IL-12, all of which are involved in creating an immune response.

"This implies that IL-37 may be a basic component of immune system regulation, with IL-37 levels affecting many other pieces of the overall response," Fujita says.

When researchers transplanted dendritic cells isolated from the lymph node of IL-37 mice and also dendritic cells isolated from wild-type (regular) mice into new mice, they saw much less "antigen challenge" in mice that had received dendritic cells from IL-37 sources; these IL-37-expressing dendritic cells failed to sensitize the immune system and thus failed to create an immune response.

"This is a case in which our understanding of basic biology could translate into applications across many disease types," Fujita says.
-end-


University of Colorado Anschutz Medical Campus

Related Immune System Articles from Brightsurf:

How the immune system remembers viruses
For a person to acquire immunity to a disease, T cells must develop into memory cells after contact with the pathogen.

How does the immune system develop in the first days of life?
Researchers highlight the anti-inflammatory response taking place after birth and designed to shield the newborn from infection.

Memory training for the immune system
The immune system will memorize the pathogen after an infection and can therefore react promptly after reinfection with the same pathogen.

Immune system may have another job -- combatting depression
An inflammatory autoimmune response within the central nervous system similar to one linked to neurodegenerative diseases such as multiple sclerosis (MS) has also been found in the spinal fluid of healthy people, according to a new Yale-led study comparing immune system cells in the spinal fluid of MS patients and healthy subjects.

COVID-19: Immune system derails
Contrary to what has been generally assumed so far, a severe course of COVID-19 does not solely result in a strong immune reaction - rather, the immune response is caught in a continuous loop of activation and inhibition.

Immune cell steroids help tumours suppress the immune system, offering new drug targets
Tumours found to evade the immune system by telling immune cells to produce immunosuppressive steroids.

Immune system -- Knocked off balance
Instead of protecting us, the immune system can sometimes go awry, as in the case of autoimmune diseases and allergies.

Too much salt weakens the immune system
A high-salt diet is not only bad for one's blood pressure, but also for the immune system.

Parkinson's and the immune system
Mutations in the Parkin gene are a common cause of hereditary forms of Parkinson's disease.

How an immune system regulator shifts the balance of immune cells
Researchers have provided new insight on the role of cyclic AMP (cAMP) in regulating the immune response.

Read More: Immune System News and Immune System Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.