Award for innovative cell culture technology

November 03, 2016

A team headed by scientists from the Department of Biosystems at ETH Zurich in Basel has developed a cell culture technology platform for testing interactions between chemical and pharmaceutical compounds and three-dimensional body tissue samples. While conventional cell culture experiments are performed using a two-dimensional cell layer in a petri dish, the new technology relies on a chip that accommodates small three-dimensional tissue spheroids that are barely half a millimetre in diameter.

"The three-dimensional microtissues better mimic organ tissue behaviour in a living body in comparison to conventional cell cultures and thus provide more meaningful results," says Olivier Frey, who is senior assistant in ETH Professor Andreas Hierlemann's lab and was largely responsible for developing the new method. Another unique feature of the new technology is that scientists are able to combine spheroids made from different tissues in one chip so that they can easily test compound interactions and impact on various tissue types.

More complex experiments now possible

More specifically, the new technology will allow scientists to test the efficacy of compounds to see, for example, whether a potential cancer drug inhibits the growth of tumour cells. By combining tumour and liver tissue in a single chip, researchers are additionally able to test whether the hepatic metabolism decreases or enhances the activity of the active agent, and whether the respective agent is toxic to the liver. In addition to testing drug candidates, it may also be possible to use the newly developed technology in personalised medicine.

In addition to combining cancer and liver tissues, which scientists have tested in their proof-of-concept study, other tissue combinations are conceivable. Researchers are now planning to work on a system including microtissues of organs affected by diabetes: pancreas and liver.

Prize for reducing animal experiments

In contrast to conventional cell culture experiments, the microtissue-based method is useful for providing more comprehensive answers to complex biomedical questions, many of which required animal experiments up to now. The technology offers the potential to reduce the number of animal experiments in biomedical research.

On 2 November, an international panel of experts therefore awarded the consortium around the ETH scientists the Global 3Rs Award/Europe, an international prize for research efforts to reduce animal experiments (see box). This is the second prize of this type that goes to the research group; in 2014 the group received an award from the UK-based National Centre for the Replacement, Refinement & Reduction of Animals in Research for an alternative system.

The body on a chip

The new technology was developed as part of an EU research project called "Body on a Chip", which was coordinated by the ETH spinoff Insphero and which involved other European project partners. The name "Body on a Chip" alludes to the term "Lab on a Chip", which describes miniaturised laboratory analysis platforms.

The main features of the cell culture chips developed by the ETH scientists include four (or six in the latest chip generation) wells in which tissue spheroids are placed and two reservoirs for the nutrient medium. A microchannel connects all wells and the reservoirs. Rocking or tilting motions of the chip or well plate slightly move the tissue spheroids and enable continuous perfusion and supply of nutrients and dosage of compounds.

The new technology is currently being used in a project supported by the Swiss Federation's Commission for Technology and Innovation (CTI) in collaboration with Insphero and the pharmaceutical company Roche. "If this test phase in industry is successful, it will be possible to think about marketing the device," says ETH professor Hierlemann.


The 3R principles

Efforts towards a more humane, ethical handling of laboratory animals are often subsumed under the term "3R". The three Rs stand for "replacement" (replacing animal testing with experiments that do not require animals), "reduction" (reducing the number of animals that are used for testing) and "refinement" (limiting the impact on the animals during a trial along with better experimental planning). More and more organisations on the national and international level are stepping forward to support these principles, including the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC International), which confers the Global 3Rs Awards in cooperation with the International Consortium for Innovation and Quality in Pharmaceutical Development (IQ).

Kim JY, Fluri DA, Marchan R, Boonen K, Mohanty S, Singh P, Hammad S, Landuyt B, Hengstler JG, Kelm JM, Hierlemann A, Frey O: 3D spherical microtissues and microfluidic technology for multi-tissue experiments and analysis. Journal of Biotechnology 2015. 205: 24-35, doi: 10.1016/j.jbiotec.2015.01.003

ETH Zurich

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to