Electron kaleidoscope: New technique visualizes multiple objects in many colors

November 03, 2016

Electron microscopy (EM), which uses particle beams of accelerated electrons to interrogate specimens, has long been a leading technology for revealing the shape and structure of the tiniest objects, from the cells which make up the bodies organs and microbes to individual building blocks or molecules which comprise cells, in often dramatic three-dimensional detail.

But current EM techniques are limited in that they produce images only in grayscale, with colorization added later. In a paper published online November 3 in Cell Chemical Biology, researchers at University of California San Diego School of Medicine and Howard Hughes Medical Institute describe a new form of multicolor EM that allows for simultaneous visualization of multiple molecular species.

"The ability to discern multiple specific molecules simultaneously adds a new dimension. It reveals details, actions and processes that aren't necessarily visible -- or even suspected -- in a more monochromatic view," said Mark H. Ellisman, PhD, professor in the Department of Neurosciences and director of the National Center for Microscopy and Imaging Research.

Ellisman is a co-senior author of the study. Roger Tsien, PhD, professor of pharmacology, chemistry and biochemistry, was also co-senior author. Tsien, who passed away August 24, was co-winner of the 2008 Nobel Prize in chemistry for his work developing green fluorescent proteins as an imaging research tool. He was considered a leading light in microscopy and imaging research and was cited as one of the "world's most influential scientific minds" by Thomson Reuters earlier this year.

Although there have been major improvements in multicolor and super-resolution fluorescence microscopy in recent years, comparable progress in EM has been more limited, achieved through automation and developments like the miniSOG protein, a new type of genetic tag visible under an EM microscope that was developed by Tsien, Ellisman and colleagues in 2011.

To create multicolor EM images, first author and project scientist Stephen R. Adams, PhD, said researchers sequentially painted cellular structures such as proteins, membranes or whole cells with different "rare earth" metals, such as lanthanum, cerium and praseodymium in the form of precipitates.

"A transmission electron microscope can distinguish each of these metals by electron energy-loss to give elemental maps of each that can be overlaid in color on the familiar monochrome electron micrograph," said Adams. "Each color highlights a different component of the cellular ultrastructure."

Multicolor EM offers the possibility to differentiate detail not possible with standard EM, which uses gold particles to label structures but which appear in images as sometimes hard-to-distinguish black spots. It provides spatial resolution not possible with fluorescence microscopy.

"This new method gives a more complete and easily detectable readout of the cellular components as colors," said Adams. "In theory, we should be able to add many more colors if we can develop more ways of precipitating additional lanthanides. The method is quite simple to do, uses easily made chemicals and requires detectors that are already present on many transmission electron microscopes so it is potentially readily transferable to other laboratories. Further research is needed to improve the chemistry and sensitivity of the method, but this work will hopefully inspire other groups to devise similar methods in this field."
Co-authors include: Mason R. Mackey, Ranjan Ramachandra, Sakina F. Palida Lemieux, Eric A. Bushong, Margaret T. Butko, Ben N.G. Giepmans, and Paul Steinbach, all at UC San Diego at the time they contributed to the work.

University of California - San Diego

Related Microscopy Articles from Brightsurf:

Ultracompact metalens microscopy breaks FOV constraints
As reported in Advanced Photonics, their metalens-integrated imaging device (MIID) exhibits an ultracompact architecture with a working imaging distance in the hundreds of micrometers.

Attosecond boost for electron microscopy
A team of physicists from the University of Konstanz and Ludwig-Maximilians-Universität München in Germany have achieved attosecond time resolution in a transmission electron microscope by combining it with a continuous-wave laser -- new insights into light-matter interactions.

Microscopy beyond the resolution limit
The Polish-Israeli team from the Faculty of Physics of the University of Warsaw and the Weizmann Institute of Science has made another significant achievement in fluorescent microscopy.

Quantum light squeezes the noise out of microscopy signals
Researchers at the Department of Energy's Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

Limitations of super-resolution microscopy overcome
The smallest cell structures can now be imaged even better: The combination of two microscopy methods makes fluorescence imaging with molecular resolution possible for the first time.

High-end microscopy refined
New details are known about an important cell structure: For the first time, two Würzburg research groups have been able to map the synaptonemal complex three-dimensionally with a resolution of 20 to 30 nanometres.

Developing new techniques to improve atomic force microscopy
Researchers from the University of Illinois at Urbana-Champaign have developed a new method to improve the noise associated with nanoscale chemical imaging using atomic force microscopy.

New discovery advances optical microscopy
New Illinois ECE research is advancing the field of optical microscopy, giving the field a critical new tool to solve challenging problems across many fields of science and engineering including semiconductor wafer inspection, nanoparticle sensing, material characterization, biosensing, virus counting, and microfluidic monitoring.

New microscopy method provides unprecedented look at amyloid protein structure
Neurodegenerative diseases such as Alzheimer's and Parkinson's are often accompanied by amyloid proteins in the brain that have become clumped or misfolded.

Novel 3D imaging technology makes fluorescence microscopy more efficient
A research team led by Dr Kevin Tsia from the University of Hong Kong (HKU), developed a new optical imaging technology -- Coded Light-sheet Array Microscopy (CLAM) -- which can perform 3D imaging at high speed, and is power efficient and gentle to preserve the living specimens during scanning at a level that is not achieved by existing technologies.

Read More: Microscopy News and Microscopy Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.