Genetic marker found for resistance to malaria treatment in Cambodia

November 03, 2016

Scientists at the Wellcome Trust Sanger Institute and their collaborators have discovered genetic markers in malaria parasites linked with resistance to the anti-malarial drug piperaquine. Reported in Lancet Infectious Diseases, this research will allow health officials to monitor the spread of resistance, and help doctors and public health officers decide where the treatment is most likely to be effective.

Resistance to this key anti-malarial drug has recently emerged in Cambodia, leading to complete treatment failure there, threatening global efforts to treat and eliminate malaria.

Malaria is caused by Plasmodium parasites and in 2015, the World Health Organisation estimated that more than 200 million people were infected and nearly half a million people died worldwide from the disease. Children under the age of five made up 70 percent of these deaths. Malaria is a treatable disease when caught early enough, but is a huge problem in many areas due to drug resistance.

Piperaquine is a powerful drug, which is used in combination with another anti-malarial, artemisinin, as a first-line treatment in many areas of the world. Resistance to artemisinin emerged more than seven years ago in South East Asia, but until recently the combination of the drugs still successfully killed the malaria parasites there. Now, the development of piperaquine resistance has led to complete failure of treatment in Cambodia.

Researchers carried out a genome-wide association study on approximately 300 Plasmodium falciparum samples from Cambodia to study the genetic basis behind piperaquine resistance. They looked at thousands of variations in the DNA sequence of the parasites, comparing these across samples with different levels of resistance to piperaquine.

Dr Roberto Amato, lead author from the Sanger Institute, said: "By studying the genomes of these parasites we found two genetic markers that are linked with piperaquine resistance. Not only can we now use these markers to monitor the spread of the drug resistant malaria, they will also help towards understanding as much as possible about the biology and evolution of the parasite."

The scientists found that extra copies of the genes encoding two proteins of a family called plasmepsin, were linked with piperaquine resistance. Plasmepsins are part of a biological pathway that is targeted by other anti-malarial drugs, so this marker could also help the researchers understand the mechanism of the drug resistance. In addition to this, a mutation on chromosome 13 was found to be a second genetic marker linked with the resistance. Both markers were observed in parasites infecting patients who were not responding to treatment.

Dr Amato added: "The emergence of piperaquine resistance in these Cambodian parasites has led to complete treatment failure there. These malaria parasites are now resistant to both drugs, and since they are no longer being killed, resistance to both drugs will spread. This will threaten global attempts to eliminate malaria."

Professor Dominic Kwiatkowski, from the Sanger Institute said: "These findings provide the tools needed to map how far this resistance has spread, looking for these molecular markers in parasites in Cambodia and neighbouring countries. This will allow national malaria control programmes to rapidly recommend alternative therapies where possible and where needed, enhancing treatment for patients, and helping towards the ultimate goal of eliminating malaria."
-end-
Notes to editors:

The study was initiated by Professor Rick Fairhurst from the National Institute of Allergy and Infectious Diseases, National Institute of Health.

What is malaria? For more information about malaria please see http://www.yourgenome.org/facts/what-is-malaria

Selected websites:

National Institutes of Allergy and Infectious Diseases, National Institutes of Health

NIAID conducts and supports research--at NIH, throughout the United States, and worldwide--to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website. https://www.niaid.nih.gov/

MalariaGEN

The Malaria Genomic Epidemiology Network (MalariaGEN) is an international community of researchers working to understand how genetic variation in humans, Plasmodium parasites, and Anopheles mosquitoes affects the biology and epidemiology of malaria - and using this knowledge to develop new tools to inform malaria control. The network currently involves researchers in more than 40 malaria-endemic countries with a coordinating centre at Oxford University and the Wellcome Trust Sanger Institute. https://www.malariagen.net/

The Wellcome Trust Sanger Institute

The Wellcome Trust Sanger Institute is one of the world's leading genome centres. Through its ability to conduct research at scale, it is able to engage in bold and long-term exploratory projects that are designed to influence and empower medical science globally. Institute research findings, generated through its own research programmes and through its leading role in international consortia, are being used to develop new diagnostics and treatments for human disease. http://www.sanger.ac.uk

Wellcome

Wellcome exists to improve health for everyone by helping great ideas to thrive. We're a global charitable foundation, both politically and financially independent. We support scientists and researchers, take on big problems, fuel imaginations and spark debate. http://www.wellcome.ac.uk

Wellcome Trust Sanger Institute

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.