The birth of a bacterial tRNA gene

November 03, 2020

Translation is the process by which genetic information is converted into proteins, the workhorses of the cell. Small molecules called transfer RNAs ("tRNAs") play a crucial role in translation; they are the adapter molecules that match codons (the building blocks of genetic information) with amino acids (the building blocks of proteins). Organisms carry many types of tRNAs, each encoded by one or more genes (the "tRNA gene set").

Broadly speaking, the function of the tRNA gene set - to translate 61 types of codons into 20 different kinds of amino acids - is conserved across organisms. Nevertheless, tRNA gene set composition can vary considerably between organisms. How and why these differences arise has been a question of long-standing interest among scientists.

Evolution of a bacterial tRNA set in the lab

Jenna Gallie (Research Group Leader at the Max Planck Institute for Evolutionary Biology) and her team have investigated how the tRNA gene set of the bacterium Pseudomonas fluorescens can evolve, using a combination of mathematical modelling and lab-based experiments.

"We started by removing one type of tRNA from the bacterium's genome, resulting in a bacterial strain that grows slowly. We gave this slow-growing strain the opportunity to improve its growth during a real-time evolution experiment. We saw the strain improve repeatedly and rapidly. The improvement was due to the duplication of large chunks of bacterial genetic information, with each duplication containing a compensatory tRNA gene. Ultimately, the elimination of one tRNA type was compensated by an increase in the amount of a second, different tRNA type." Jenna Gallie said. The duplicated tRNA type can compensate because it is able to perform, at a lower rate, the codon-amino acid matching function of the eliminated tRNA type.

The first direct observation of tRNA gene duplication

Comparisons of tRNA genes in related genomes have previously provided evidence for the duplication of some tRNA genes throughout evolutionary history. The experiments described here provide direct, empirical evidence that tRNA gene sets can evolve through duplication events.
-end-
Original publication
Ayan, G.; Park, H.J.; Gallie, J.
The birth of a bacterial tRNA gene by large-scale, tandem duplication events
eLife 2020;9:e57947
Oct 30, 2020

Max-Planck-Gesellschaft

Related Evolution Articles from Brightsurf:

Seeing evolution happening before your eyes
Researchers from the European Molecular Biology Laboratory in Heidelberg established an automated pipeline to create mutations in genomic enhancers that let them watch evolution unfold before their eyes.

A timeline on the evolution of reptiles
A statistical analysis of that vast database is helping scientists better understand the evolution of these cold-blooded vertebrates by contradicting a widely held theory that major transitions in evolution always happened in big, quick (geologically speaking) bursts, triggered by major environmental shifts.

Looking at evolution's genealogy from home
Evolution leaves its traces in particular in genomes. A team headed by Dr.

How boundaries become bridges in evolution
The mechanisms that make organisms locally fit and those responsible for change are distinct and occur sequentially in evolution.

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Paleontology: Experiments in evolution
A new find from Patagonia sheds light on the evolution of large predatory dinosaurs.

A window into evolution
The C4 cycle supercharges photosynthesis and evolved independently more than 62 times.

Is evolution predictable?
An international team of scientists working with Heliconius butterflies at the Smithsonian Tropical Research Institute (STRI) in Panama was faced with a mystery: how do pairs of unrelated butterflies from Peru to Costa Rica evolve nearly the same wing-color patterns over and over again?

Predicting evolution
A new method of 're-barcoding' DNA allows scientists to track rapid evolution in yeast.

Insect evolution: Insect evolution
Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown that the incidence of midge and fly larvae in amber is far higher than previously thought.

Read More: Evolution News and Evolution Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.