Spectrometer Measures Auroras' Impact On Ionosphere

November 03, 1998

CHAMPAIGN, Ill. -- A new imaging spectrometer developed at the University of Illinois will assist scientists who are studying auroras and their effects upon Earth's atmosphere. By discerning spectral characteristics of auroral emissions as a function of altitude, the instrument will aid in the verification and refinement of atmospheric chemistry models.

Commonly referred to as "northern lights" or "southern lights," auroras form over Earth's magnetic poles when charged particles in the solar wind bombard atoms in the ionosphere. The excited atoms release their energy in the form of light ? often as shimmering curtains or pulsing filaments. The solar magnetic storms that create these ribbons of light can disrupt power grids in northern Canada and wreak havoc with communications systems that propagate signals through the ionosphere.

"Analysis of the spatial distribution of auroral emissions is important to the study of chemical and dynamical processes occurring in the Earth's ionosphere," said Gary Swenson, the U. of I. professor of electrical and computer engineering who directed the spectrometer project. "This spectrometer tells us which emissions are present, how strong they are, and at what altitude they occur. From this information we can determine the energy of the particles that are penetrating the ionosphere, and compare their observed effects with what our models predict."

The spectrometer works by focusing auroral features onto a grism (a diffraction grating on a prism) and projecting the resulting image onto a CCD (charge-coupled device) array detector. "The spectrometer disperses spectrally in one direction while preserving spatial information in the orthogonal direction," Swenson said.

Unlike standard optical systems that must take data sequentially -- by stepping through filters or by tilting the prism -- the new instrument can simultaneously record all emissions at all observed altitudes. "This is a key advantage when observing auroras," Swenson said, "which are temporally active and can change extremely rapidly."

In recent measurements conducted at Sondrestrom, Greenland, the spectrometer successfully characterized the spatial distribution of auroral features between a height of 80 and 320 kilometers.

"By comparing these detailed altitude distributions of respective emissions with our atmospheric models, we can improve our understanding of the effect that solar magnetic storms have on geophysical processes in the Earth's upper atmosphere," Swenson said.

In addition to Swenson, Richard Rairden of the Lockheed Martin Space Sciences Laboratory, Stanley Solomon of the University of Colorado, and U. of I. graduate student Sharath Ananth assisted in developing the spectrometer and taking the auroral measurements. The researchers described the instrument in the Aug. 20 issue of Applied Optics.
-end-


University of Illinois at Urbana-Champaign

Related Emissions Articles from Brightsurf:

Multinationals' supply chains account for a fifth of global emissions
A fifth of carbon dioxide emissions come from multinational companies' global supply chains, according to a new study led by UCL and Tianjin University that shows the scope of multinationals' influence on climate change.

A new way of modulating color emissions from transparent films
Transparent luminescent materials have several applications; but so far, few multicolor light-emitting solid transparent materials exist in which the color of emission is tunable.

Can sunlight convert emissions into useful materials?
A team of researchers at the USC Viterbi School of Engineering has designed a method to break CO2 apart and convert the greenhouse gas into useful materials like fuels or consumer products ranging from pharmaceuticals to polymers.

Methane: emissions increase and it's not a good news
It is the second greenhouse gas with even a global warming potential larger than CO2.

Tracking fossil fuel emissions with carbon-14
Researchers from NOAA and the University of Colorado have devised a breakthrough method for estimating national emissions of carbon dioxide from fossil fuels using ambient air samples and a well-known isotope of carbon that scientists have relied on for decades to date archaeological sites.

COVID-19 puts brakes on global emissions
Carbon dioxide emissions from fossil fuel sources reached a maximum daily decline of 17 per cent in April as a result of drastic decline in energy demand that have occurred during the COVID-19 pandemic.

Egregious emissions
Call them 'super polluters' -- the handful of industrial facilities that emit unusually high levels of toxic chemical pollution year after year.

Continued CO2 emissions will impair cognition
New CU Boulder research finds that an anticipated rise in carbon dioxide concentrations in our indoor living and working spaces by the year 2100 could lead to impaired human cognition.

Capturing CO2 from trucks and reducing their emissions by 90%
Researchers at EPFL have patented a new concept that could cut trucks' CO2 emissions by almost 90%.

Big trucks, little emissions
Researchers reveal a new integrated, cost-efficient way of converting ethanol for fuel blends that can reduce greenhouse gas emissions.

Read More: Emissions News and Emissions Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.