New spaceship force field makes Mars trip possible

November 04, 2008

According to the international space agencies, "Space Weather" is the single greatest obstacle to deep space travel. Radiation from the sun and cosmic rays pose a deadly threat to astronauts in space.

New research, out today, Tuesday, November 4, published in IOP Publishing's Plasma Physics and Controlled Fusion, shows how knowledge gained from the pursuit of nuclear fusion research may reduce the threat to acceptable levels, making man's first mission to Mars a much greater possibility.

The solar energetic particles, although just part of the 'cosmic rays' spectrum, are of greatest concern because they are the most likely to cause deadly radiation damage to the astronauts.

Large numbers of these energetic particles occur intermittently as "storms" with little warning and are already known to pose the greatest threat to man. Nature helps protect the Earth by having a giant "magnetic bubble" around the planet called the magnetosphere.

The Apollo astronauts of the 1960's and 70's who walked upon the Moon are the only humans to have travelled beyond the Earth's natural "force field" - the Earth's magnetosphere. With typical journeys on the Apollo missions lasting only about 8 days, it was possible to miss an encounter with such a storm; a journey to Mars, however, would take about eighteen months, during which time it is almost certain that astronauts would be enveloped by such a "solar storm".

Space craft visiting the Moon or Mars could maintain some of this protection by taking along their very own portable "mini"-magnetosphere. The idea has been around since the 1960's but it was thought impractical because it was believed that only a very large (more than 100km wide) magnetic bubble could possibly work.

Researchers at the Science and Technology Facilities Council's Rutherford Appleton Laboratory, the Universities of York, Strathclyde and IST Lisbon, have undertaken experiments, using know-how from 50 years of research into nuclear fusion, to show that it is possible for astronauts to shield their spacecrafts with a portable magnetosphere - scattering the highly charged, ionised particles of the solar wind and flares away from their space craft.

Computer simulations done by a team in Lisbon with scientists at Rutherford Appleton last year showed that theoretically a very much smaller "magnetic bubble" of only several hundred meters across would be enough to protect a spacecraft.

Now this has been confirmed in the laboratory in the UK using apparatus originally built to work on fusion. By recreating in miniature a tiny piece of the Solar Wind, scientists working in the laboratory were able to confirm that a small "hole" in the Solar Wind is all that would be needed to keep the astronauts safe on their journey to our nearest neighbours.

Dr. Ruth Bamford, one of the lead researchers at the Rutherford Appleton Laboratory, said, "These initial experiments have shown promise and that it may be possible to shield astronauts from deadly space weather".
-end-


IOP Publishing

Related Mars Articles from Brightsurf:

Water on ancient Mars
A meteorite that originated on Mars billions of years ago reveals details of ancient impact events on the red planet.

Surprise on Mars
NASA's InSight mission provides data from the surface of Mars.

Going nuclear on the moon and Mars
It might sound like science fiction, but scientists are preparing to build colonies on the moon and, eventually, Mars.

Mars: Where mud flows like lava
An international research team including recreated martian conditions in a low-pressure chamber to observe the flow of mud.

What's Mars made of?
Earth-based experiments on iron-sulfur alloys thought to comprise the core of Mars reveal details about the planet's seismic properties for the first time.

The seismicity of Mars
Fifteen months after the successful landing of the NASA InSight mission on Mars, first scientific analyses of ETH Zurich researchers and their partners reveal that the planet is seismically active.

Journey to the center of Mars
While InSight's seismometer has been patiently waiting for the next big marsquake to illuminate its interior and define its crust-mantle-core structure, two scientists, have built a new compositional model for Mars.

Getting mac and cheese to Mars
Washington State University scientists have developed a way to triple the shelf life of ready-to-eat macaroni and cheese, a development that could have benefits for everything from space travel to military use.

Life on Mars?
Researchers from Hungary have discovered embedded organic material in a Martian meteorite found in the late 1970s.

New evidence of deep groundwater on Mars
Researchers at the USC Arid Climate and Water Research Center (AWARE) have published a study that suggests deep groundwater could still be active on Mars and could originate surface streams in some near-equatorial areas on Mars.

Read More: Mars News and Mars Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.