Hydrogen tank lighter than battery

November 04, 2008

Dutch-sponsored researcher Robin Gremaud has shown that an alloy of the metals magnesium, titanium and nickel is excellent at absorbing hydrogen. This light alloy brings us a step closer to the everyday use of hydrogen as a source of fuel for powering vehicles. A hydrogen 'tank' using this alloy would have a relative weight that is fourty percent less than a battery pack. In order to find the best alloy Gremaud developed a method which enabled simultaneous testing of thousands of samples of different metals for their capacity to absorb hydrogen. The British company Ilika in Southampton has shown considerable interest.

Hydrogen is considered to be a clean and therefore important fuel of the future. This gas can be used directly in cars in an internal combustion engine, like in BMW's hydrogen vehicle, or it can be converted into electrical energy in so-called fuel cells, like in the Citaro buses in service in Amsterdam.

The major problem of using hydrogen in transport is the secure storage of this highly explosive gas. This can be realised by using metals that absorb the gas. However, a drawback of this approach is that it makes the hydrogen 'tanks' somewhat cumbersome.

The battery, the competing form of storage for electrical energy, comes off even worse. Driving four hundred kilometres with an electric car, with performances comparable to those of the Toyota Prius, would require the car to carry 317 kilos of modern lithium batteries for its journey. With Gremaud's light metal alloy this same distance would require a hydrogen tank of 'only' two hundred kilos. Although this new metal alloy is important for the development of hydrogen as a fuel, the discovery of the holy grail of hydrogen storage is still some way off.

Hydrogenography


In his research Gremaud made use of a technique for measuring the absorbance of hydrogen by metals, based on the phenomenon of 'switchable mirrors' discovered at the VU University Amsterdam. About ten years ago researchers at the VU discovered that certain materials lose their reflection by absorbing hydrogen. This technique became known as hydrogenography, or 'writing with hydrogen'. Using this technique, Gremaud was able to simultaneously analyse the efficacy of thousands of different combinations of the metals magnesium, titanium and nickel. Traditional methods require separate testing for each alloy.

The analysis requires each of the three metals to be eroded from an individual source and deposited onto a transparent film in a thin layer of 100 nanometres using so-called sputtering deposition. This ensures that the three metals are deposited onto the film in many different ratios. When the film is exposed to different amounts of hydrogen, it is clearly visible, even to the naked eye, which composition of metals is best at absorbing hydrogen.

Gremaud is the first to use this method for measuring hydrogen absorption. The British company Ilika in Southampton wants to build a hydrogen analyser using this technique.
-end-
Gremaud's research was funded by NWO Chemical Sciences as part of the National Programme 'Sustainable Hydrogen'.

Netherlands Organization for Scientific Research

Related Hydrogen Articles from Brightsurf:

Solar hydrogen: let's consider the stability of photoelectrodes
As part of an international collaboration, a team at the HZB has examined the corrosion processes of high-quality BiVO4 photoelectrodes using different state-of-the-art characterisation methods.

Hydrogen vehicles might soon become the global norm
Roughly one billion cars and trucks zoom about the world's roadways.

Hydrogen economy with mass production of high-purity hydrogen from ammonia
The Korea Institute of Science and Technology (KIST) has made an announcement about the technology to extract high-purity hydrogen from ammonia and generate electric power in conjunction with a fuel cell developed by a team led by Young Suk Jo and Chang Won Yoon from the Center for Hydrogen and Fuel Cell Research.

Superconductivity: It's hydrogen's fault
Last summer, it was discovered that there are promising superconductors in a special class of materials, the so-called nickelates.

Hydrogen energy at the root of life
A team of international researchers in Germany, France and Japan is making progress on answering the question of the origin of life.

Hydrogen alarm for remote hydrogen leak detection
Tomsk Polytechnic University jointly with the University of Chemistry and Technology of Prague proposed new sensors based on widely available optical fiber to ensure accurate detection of hydrogen molecules in the air.

Preparing for the hydrogen economy
In a world first, University of Sydney researchers have found evidence of how hydrogen causes embrittlement of steels.

Hydrogen boride nanosheets: A promising material for hydrogen carrier
Researchers at Tokyo Institute of Technology, University of Tsukuba, and colleagues in Japan report a promising hydrogen carrier in the form of hydrogen boride nanosheets.

World's fastest hydrogen sensor could pave the way for clean hydrogen energy
Hydrogen is a clean and renewable energy carrier that can power vehicles, with water as the only emission.

Chemical hydrogen storage system
Hydrogen is a highly attractive, but also highly explosive energy carrier, which requires safe, lightweight and cheap storage as well as transportation systems.

Read More: Hydrogen News and Hydrogen Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.