The overall channels of the lightning discharges

November 04, 2008

The VHF radio interferometer system was designed by ZHANG GuangShu, et al of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences. By using this system, a cloud-to-ground lightning flash containing 19 strokes was observed and several new characteristics of lightning have been revealed. The study is reported in volume51, number 5 (May, 2008) of the Science in China (Series D, Earth Sciences).

The system in this study has five antennas that form an array in orthogonal directions, and an interactive graphic analysis procedure is used to remove the fringe ambiguities. The system error, which comes from frequency conversion, is reduced by phase detection through direct high frequency amplifying. By using the system, the whole progression process in time and space of a lightning flash can be continuously reconstructed at microsecond orders. As an example, the overall channel of a normal cloud-to-ground lightning flash that contains 19 strokes was analyzed and presented (fig. 1). It is found that the preliminary breakdown event of the CG flash started from negative charge region and exhibited firstly a downward progression and then an upward propagation. Intense and continuous radiations during stepped leaders became much stronger when the first return stroke began. In contrast, there were less and only discrete radiations during dart leaders. Stepped leader and dart leader may transform to each other depending on the state of the ionization of the path. The progression speed of initial stepped leaders was about 105 ms-1, while that was about 4.1×106 ms-1 and 6.0×106 ms-1 for dart leaders and dart-stepped leaders, respectively. M events produced hook-shaped field changes, accompanied by active burst of radiations at their beginnings. Following these active radiation processes, M events appeared to contact finally into conducting main discharge channels. The mean progression speed of M events was about 7×107ms-1, greater than that of the dart leaders and dart-step leaders. K events and attempted leaders (ATP) were essentially the same as the dart leaders except that they could not reach the ground and initiate return strokes.

Two methods, time of arrival (TOA) technique and interferometric technique, have been used to locate RF radiation events of lightning discharge up to now. TOA technique works better for locating isolated, impulsive radiation events. Since TOA technique has less time resolution, it is impossible to use it to study the whole process of a lightning discharge in detail. Interferometric technique works better for burst of impulses lasting several tens or hundreds of microseconds and can be used to locate the whole process of a lighting discharge in a time resolution of microsecond orders. However, the existence of so-called fringe ambiguities severely limits the measurement precision. ZHANG GuangShu, et al., researchers of Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, have been studying the technique of the TOA and interferometer during the past 10 years and have successfully solved many problems of the previous systems.

Now, ZHANG GuangShu, et al. are working to combine various location methods in hope of developing a more powerful tool for lightning study.
-end-
This research was supported by the National Natural Science Foundation of China (Grant No. 40775004) and the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-206-2).

Reference: Zhang G, Zhao Y, Qie X, et al. Observation and study on the whole process of cloud-to-ground lightning using narrowband radio interferometer. Sci. China Ser D-Earth Sci., 2008, 51(5): 694-708

Science China Press

Related Lightning Articles from Brightsurf:

Earthquake lightning: Mysterious luminescence phenomena
Photoemission induced by rock fracturing can occur as a result of landslides associated with earthquakes.

Ammonia sparks unexpected, exotic lightning on Jupiter
NASA's Juno spacecraft -- orbiting and closely observing the planet Jupiter -- has unexpectedly discovered lightning in the planet's upper atmosphere, according to a multi-institutional study led by the NASA/Jet Propulsion Laboratory (JPL).

Lightning strikes more than 100 million times per year in the tropics
Tropical storms often begin with an impressive display of pyrotechnics, but researchers have largely overlooked the role of lightning strikes in tropical ecosystems.

Using AI to predict where and when lightning will strike
Researchers at EPFL have developed a novel way of predicting lightning strikes to the nearest 10 to 30 minutes and within a radius of 30 kilometers.

Chains of atoms move at lightning speed inside metals
A phenomenon that has previously been seen when researchers simulate the properties of planet cores at extreme pressures has now also been observed in pure titanium at atmospheric pressure.

Lightning 'superbolts' form over oceans from November to February
Lightning superbolts -- which unleash a thousand times more low-frequency energy than regular lightning bolts -- occur in dramatically different patterns than regular lightning, according to a new, nine-year survey of these rare events.

Lightning bolt underwater
Electrochemical cells help recycle CO2. However, the catalytic surfaces get worn down in the process.

Computer scientists predict lightning and thunder with the help of artificial intelligence
Together with Germany's National Meteorological Service, the Deutscher Wetterdienst, computer science professor Jens Dittrich and his doctoral student Christian Schön from Saarland University are working on a system that is supposed to predict local thunderstorms more precisely than before.

Thunderbolt of lightning, gamma rays exciting
University of Tokyo graduate student Yuuki Wada with colleagues from Japan discover a connection between lightning strikes and two kinds of gamma-ray phenomena in thunderclouds.

Why lightning often strikes twice
An international research team led by the University of Groningen has used the LOFAR radio telescope to study the development of lightning flashes in unprecedented detail.

Read More: Lightning News and Lightning Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.