Nav: Home

College of Veterinary Medicine researcher doubles down on deadly, infectious cat diseases

November 04, 2013

MANHATTAN, Kan. -- If cats really had nine lives, one reason might be to help deal with the wide variety of diseases that threaten feline health.

Yunjeong Kim, a research assistant professor in the College of Veterinary Medicine at Kansas State University, has developed a research approach that tackles two deadly infectious feline diseases at the same time. Her work is being supported by a $156,342 award from the Morris Animal Foundation.

"Coronavirus and calicivirus infections are very common among cats, and cats tend to get repeatedly infected by these viruses throughout their lifetime," said Kim, who works in the college's diagnostic medicine and pathobiology department. "Feline coronavirus can cause gastroenteritis, and calicivirus often causes ulcerative upper respiratory infection with gingivitis and stomatitis. In most cases, these viral infections are mild and self-limited."

But Kim says some cats that are infected with these viruses develop life-threatening illnesses with high fatality. The deadly form of feline coronavirus infection, feline infectious peritonitis, or FIP, has been recognized since the early 1970s and is currently the leading infectious cause of death in young cats. More recently, virulent systemic feline calicivirus infection, or vs-FCV, has emerged associated with a systemic infection that is frequently fatal. Since 1998, numerous outbreaks of vs-FCV infection have been reported in animal shelters and catteries with mortality as high as 67 percent.

Vaccines are available for FIP and vs-FCV, but their field application seems to be limited or not recommended due to various reasons, and there is no antiviral drug for these viral infections. That means there is a great need for safe and effective antiviral drugs for these diseases.

"We have been working on a virus protease that is highly conserved among some viruses, including coronavirus and calicivirus," Kim said. "This virus protease, 3C-like protease, is essential for successful virus replication, thus it is a promising target for antiviral drug development."

Kim is collaborating with Kansas State University's Kyeong-Ok Chang, a virologist in the diagnostic medicine and pathobiology department, and with Duy Hua and William Groutas, who are medicinal chemists at Kansas State University and Wichita State University, respectively.

"We designed a series of inhibitors for 3C-like protease, and identified a couple of promising compounds through various steps involving exploring the relationship between a compound structure and its biological activity," Kim said. "Some of the work has been supported by another grant from the Winn Feline Foundation. The compounds effective against FIP virus are currently under investigation for pharmacokinetic properties in cats in collaboration with Dr. Niels C. Pedersen at the University of California, Davis. This will give us valuable information that will guide our further efforts in moving forward with development of a safe and efficacious antiviral drug for FIP."

Kim continues to probe the possibility of developing antiviral compounds that are active against both FIPV and vs-FCV. The drug discovery and development process is very long and expensive, and can be fraught with difficulties.

"More and more focus has been placed on the development of broad-spectrum antiviral drugs that work against multiple viruses," Kim said. "That is the reason we also generated a series of compounds with broad activity against FIP and vs-FCV based on the structural and functional similarities of the proteases of these viruses. For the next three years, supported by the Morris Animal Foundation grant, we will characterize those compounds for drug-like properties and also identify additional backup compounds. In addition to protease inhibitors, we identified a cellular enzyme that is important in both FIPV and FCV. The grant also will support our research on the roles of the cellular enzyme in virus replication, which may provide important insight into the pathogenicity of these viruses and also may lead to a new antiviral drug target."

The challenge, according to Kim, is that an antiviral drug must not only be effective at reducing clinical symptoms and mortality, but it also must be safe and, preferably, available orally.

"We are currently at an early stage and there will be many obstacles to overcome," she said. "But we are encouraged by the progress we are making toward the goal."
-end-


Kansas State University

Related Viruses Articles:

First video of viruses assembling
For the first time, researchers have captured images of the formation of individual viruses, offering a real-time view into the kinetics of viral assembly.
Plant viruses may be reshaping our world
A new review article appearing in the journal Nature Reviews Microbiology highlights the evolution and ecology of plant viruses.
Checkmate for hepatitis B viruses in the liver
Researchers at Helmholtz Zentrum München and the Technical University of Munich, working in collaboration with researchers at the University Medical Center Hamburg-Eppendorf and the University Hospital Heidelberg, have for the first time succeeded in conquering a chronic infection with the hepatitis B virus in a mouse model.
How viruses outsmart their host cells
Viruses depend on host cells for replication, but how does a virus induce its host to transcribe its own genetic information alongside that of the virus, thus producing daughter viruses?
Mobile, instant diagnosis of viruses
In a first for plant virology, a team from CIRAD recently used nanopore technology to sequence the entire genomes of two yam RNA viruses.
How ancient viruses got cannabis high
THC and CBD, bioactive substances produced by cannabis and sought by medical patients and recreational users, sprung to life thanks to ancient colonization of the plant's genome by viruses, U of T researchers have found.
Viruses under the microscope
Human herpesviruses such as HHV-6 can remain dormant in cells for many years without being noticed.
Ancient origins of viruses discovered
Research published today in Nature has found that many of the viruses infecting us today have ancient evolutionary histories that date back to the first vertebrates and perhaps the first animals in existence.
Attacking flu viruses from two sides
UZH researchers have discovered a new way in which certain antibodies interact with the flu virus.
How bats carry viruses without getting sick
Bats are known to harbor highly pathogenic viruses like Ebola or Marburg and yet they do not show clinical signs of disease.
More Viruses News and Viruses Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab