Stem cells linked to cognitive gain after brain injury in preclinical study

November 04, 2013

HOUSTON - (Nov. 4, 2013) - A stem cell therapy previously shown to reduce inflammation in the critical time window after traumatic brain injury also promotes lasting cognitive improvement, according to preclinical research led by Charles Cox, M.D., at The University of Texas Health Science Center at Houston (UTHealth) Medical School.

The research was published in today's issue of STEM CELLS Translational Medicine.

Cellular damage in the brain after traumatic injury can cause severe, ongoing neurological impairment and inflammation. Few pharmaceutical options exist to treat the problem. About half of patients with severe head injuries need surgery to remove or repair ruptured blood vessels or bruised brain tissue.

A stem cell treatment known as multipotent adult progenitor cell (MAPC) therapy has been found to reduce inflammation in mice immediately after traumatic brain injury, but no one had been able to gauge its usefulness over time.

The research team led by Cox, the Children's Fund, Inc. Distinguished Professor of Pediatric Surgery at the UTHealth Medical School, injected two groups of brain-injured mice with MAPCs two hours after the mice were injured and again 24 hours later. One group received a dose of 2 million cells per kilogram and the other a dose five times stronger.

After four months, the mice receiving the stronger dose not only continued to have less inflammation--they also made significant gains in cognitive function. A laboratory examination of the rodents' brains confirmed that those receiving the higher dose of MAPCs had better brain function than those receiving the lower dose.

"Based on our data, we saw improved spatial learning, improved motor deficits and fewer active antibodies in the mice that were given the stronger concentration of MAPCs," Cox said.

The study indicates that intravenous injection of MAPCs may in the future become a viable treatment for people with traumatic brain injury, he said.

Cox, who directs the Pediatric Surgical Translational Laboratories and Pediatric Program in Regenerative Medicine at UTHealth, is a leader in the field of autologous and blood cord stem cells for traumatic brain injury in children and adults. Results from a Phase I study were published in a March 2011 issue of Neurosurgery, the journal of the Congress of Neurological Surgeons. Cox also directs the Pediatric Trauma Program at Children's Memorial Hermann Hospital.
-end-


University of Texas Health Science Center at Houston

Related Traumatic Brain Injury Articles from Brightsurf:

Point-of-care biomarker assay for traumatic brain injury
Intracranial abnormalities on CT scan in patients with traumatic brain injury (TBI) can be predicted by glial fibrillary acidic protein (GFAP) levels in the blood.

Long-studied protein could be a measure of traumatic brain injury
WRAIR scientists have recently demonstrated that cathepsin B, a well-studied protein important to brain development and function, can be used as biomarker, or indicator of severity, for TBI.

Reducing dangerous swelling in traumatic brain injury
After a traumatic brain injury (TBI), the most harmful damage is caused by secondary swelling of the brain compressed inside the skull.

Blue light can help heal mild traumatic brain injury
Daily exposure to blue wavelength light each morning helps to re-entrain the circadian rhythm so that people get better, more regular sleep which was translated into improvements in cognitive function, reduced daytime sleepiness and actual brain repair.

Dealing a therapeutic counterblow to traumatic brain injury
A team of NJIT biomedical engineers are developing a therapy which shows early indications it can protect neurons and stimulate the regrowth of blood vessels in damaged tissue.

Predictors of cognitive recovery following mild to severe traumatic brain injury
Researchers have shown that higher intelligence and younger age are predictors of greater cognitive recovery 2-5 years post-mild to severe traumatic brain injury (TBI).

Which car crashes cause traumatic brain injury?
Motor vehicle crashes are one of the most common causes of TBI-related emergency room visits, hospitalizations and deaths.

Traumatic brain injury and kids: New treatment guidelines issued
To help promote the highest standards of care, and improve the overall rates of survival and recovery following TBI, a panel of pediatric critical care, neurosurgery and other pediatric experts today issued the third edition of the Brain Trauma Foundation Guidelines for the Management of Pediatric Severe TBI.

Addressing sleep disorders after traumatic brain injury
Amsterdam, NL, December 10, 2018 - Disorders of sleep are some of the most common problems experienced by patients after traumatic brain injury (TBI).

Rutgers researchers discover possible cause for Alzheimer's and traumatic brain injury
Rutgers researchers discover a possible cause for Alzheimer's and traumatic brain injury, and the new mechanism may have also led to the discovery of an effective treatment.

Read More: Traumatic Brain Injury News and Traumatic Brain Injury Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.