Dark matter may be massive

November 04, 2014

The physics community has spent three decades searching for and finding no evidence that dark matter is made of tiny exotic particles. Case Western Reserve University theoretical physicists suggest researchers consider looking for candidates more in the ordinary realm and, well, more massive.

Dark matter is unseen matter, that, combined with normal matter, could create the gravity that, among other things, prevents spinning galaxies from flying apart. Physicists calculate that dark matter comprises 27 percent of the universe; normal matter 5 percent.

Instead of WIMPS, weakly interacting massive particles, or axions, which are weakly interacting low-mass particles, dark matter may be made of macroscopic objects, anywhere from a few ounces to the size of a good asteroid, and probably as dense as a neutron star, or the nucleus of an atom, the researchers suggest.Physics professor Glenn Starkman; David Jacobs, who received his PhD in Physics from CWRU in May and is now a fellow at the University of Cape Town; and Bryan Lynn, a visiting physics professor at CWRU, say published observations provide guidance, limiting where to look. They lay out the possibilities in a paper at http://arxiv.org/pdf/1410.2236.pdf. The Macros, as Starkman and Jacobs call them, would not only dwarf WIMPS and axions, but differ in an important way. They could potentially be assembled out of particles in the Standard Model of particle physics instead of requiring new physics to explain their existence.

"We've been looking for WIMPs for a long time and haven't seen them," Starkman said. "We expected to make WIMPS in the Large Hadron Collider, and we haven't."

WIMPS and axions remain possible candidates for dark matter, but there's reason to search elsewhere, the theorists argue.

"The community had kind of turned away from the idea that dark matter could be made of normal-ish stuff in the late '80s," Starkman said. "We ask, was that completely correct and how do we know dark matter isn't more ordinary stuff-- stuff that could be made from quarks and electrons?"

After eliminating most ordinary matter, including failed Jupiters, white dwarfs, neutron stars, stellar black holes, the black holes in centers of galaxies and neutrinos with a lot of mass, as possible candidates, physicists turned their focus on the exotics.

Matter that was somewhere in between ordinary and exotic--relatives of neutron stars or large nuclei--was left on the table, Starkman said. "We say relatives because they probably have a considerable admixture of strange quarks, which are made in accelerators and ordinarily have extremely short lives," he said.

Although strange quarks are highly unstable, Starkman points out that neutrons are also highly unstable. But in helium, bound with stable protons, neutrons remain stable.

"That opens the possibility that stable strange nuclear matter was made in the early universe and dark matter is nothing more than chunks of strange nuclear matter or other bound states of quarks, or of baryons, which are themselves made of quarks," he said. Such dark matter would fit the Standard Model.

The Macros would have to be assembled from ordinary and strange quarks or baryons before the strange quarks or baryons decay, and at a temperature above 3.5 trillion degrees Celsius, comparable to the temperature in the center of a massive supernova, Starkman and Jacobs calculated. The quarks would have to be assembled with 90 percent efficiency, leaving just 10 percent to form the protons and neutrons found in the universe today.

The limits of the possible dark matter are as follows: If dark matter is within this allowed range, there are reasons it hasn't been seen.
-end-


Case Western Reserve University

Related Dark Matter Articles from Brightsurf:

Dark matter from the depths of the universe
Cataclysmic astrophysical events such as black hole mergers could release energy in unexpected forms.

Seeing dark matter in a new light
A small team of astronomers have found a new way to 'see' the elusive dark matter haloes that surround galaxies, with a new technique 10 times more precise than the previous-best method.

Holding up a mirror to a dark matter discrepancy
The universe's funhouse mirrors are revealing a difference between how dark matter behaves in theory and how it appears to act in reality.

Zooming in on dark matter
Cosmologists have zoomed in on the smallest clumps of dark matter in a virtual universe - which could help us to find the real thing in space.

Looking for dark matter with the universe's coldest material
A study in PRL reports on how researchers at ICFO have built a spinor BEC comagnetometer, an instrument for studying the axion, a hypothetical particle that may explain the mystery of dark matter.

Looking for dark matter
Dark matter is thought to exist as 'clumps' of tiny particles that pass through the earth, temporarily perturbing some fundamental constants.

New technique looks for dark matter traces in dark places
A new study by scientists at Lawrence Berkeley National Laboratory, UC Berkeley, and the University of Michigan -- published today in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

Researchers look for dark matter close to home
Eighty-five percent of the universe is composed of dark matter, but we don't know what, exactly, it is.

Galaxy formation simulated without dark matter
For the first time, researchers from the universities of Bonn and Strasbourg have simulated the formation of galaxies in a universe without dark matter.

Taking the temperature of dark matter
Warm, cold, just right? Physicists at UC Davis are using gravitational lensing to take the temperature of dark matter, the mysterious substance that makes up about a quarter of our universe.

Read More: Dark Matter News and Dark Matter Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.