Antimatter not so different after all

November 04, 2015

HOUSTON - (Nov. 4, 2015) - Due to the diligence of a Rice University student and his calculations, humanity now knows a little more about the universe.

Kefeng Xin, a graduate student at Rice, is one of a handful of primary authors who revealed evidence this week that the attractive force between antiprotons is similar to that between protons -- and measured it.

Specifically, the team measured two important parameters: the scattering length and the effective range of interaction between two antiprotons. This gave scientists a fundamental new way to understand the force that holds together the nuclei in antimatter and how this compares to matter.

"This is about the subtle difference in the way matter and antimatter interact with each other," said Rice physicist Frank Geurts.

Antiprotons carry the opposite electrical charge and spin that protons do. Like all matter and antimatter, both were created at the instant of the Big Bang. Physicists are still trying to understand why they see so few antiparticles in nature even though particles and antiparticles were produced in equal amounts and annihilate each other on contact.

"It could have been that antimatter didn't have the same attractive force as matter and would have helped explain how these differences, during the initial part of the Big Bang, might have resulted in antimatter not having survived in the shape of stars and planets, as matter did," Geurts said.

"That's where this research is helpful. The interactions between two antimatter particles turn out to be quite similar to matter particles. It may not give us a solution to the bigger problem, but we most definitely removed one option," he said.

The find was reported in Nature on behalf of the more than 500 scientists, including Geurts, who work on the STAR experiment, part of the Relativistic Heavy Ion Collider (RHIC) at the U.S. Department of Energy's Brookhaven National Laboratory. Brookhaven's story on the discovery appears here.

The scattering length is a measurement of how particles deviate as they travel from source to destination; their paths are visible as three-dimensional traces captured by STAR (which is short for Solenoid Tracker at RHIC). The effective range indicates how close particles need to be for their charges to influence each other, like magnets.

Both are measured in femtometers. One femtometer is one-millionth of a nanometer; a nanometer is one-billionth of a meter.

For antiprotons measured at RHIC, the scattering length was roughly 7.41 femtometers, and the effective range was 2.14 femtometers, nearly equivalent to their proton counterparts. Measuring distances that small involves both sophisticated equipment and sophisticated calculations.

"This discovery isn't a surprise," said Xin, whose Ph.D. thesis focuses on rather exotic systems called muonic atoms. "We've been studying the interaction between nucleons (particles that make up an atom's nucleus) for decades, and we've always thought the forces between antimatter particles are the same as for matter. But this is the first time we've been able to quantify it."

Xin, a student of Geurts, applied methods developed in his thesis to the analysis. The first task was to determine which particles produced in a collision were indeed antiprotons and whether any two were in close enough proximity to influence each other. Then came correlating their momentum from creation to destruction, typically a few nanoseconds.

"All of the data we collected in 2011 is from 500 million events (collisions between two heavy gold ions)," Xin said. "Pretty much every event can contribute."

Antimatter can be created in small amounts with a collider like RHIC and analyzed. The collider accelerates the nuclei of heavy atoms to nearly the speed of light and smashes them together to produce elemental particles, antiparticles and exotic materials like quarks, muons and plasmas. All of these can be characterized by tools built at Rice and elsewhere as part of STAR.

RHIC smashed gold ions to produce hundreds of millions of particles, which can be detected by the ionization traces they leave in a gas-filled cylinder that surrounds the collision and a "time-of-flight" sensor. The instrument, the construction of which was led by Rice, tells researchers how many nanoseconds it takes particles to travel from the point of impact to sensors at the outer boundaries of the collider.

"RHIC is ideal for this kind of experiment because it allows us to dump a boatload of energy into a very small volume and have many particles come out of it," Geurts said. "The multiplicity is important. If you don't make a lot of particles, the odds of having them interact with each other is slim."

Researchers from 52 institutions that are part of the STAR collaboration are co-authors of the Nature paper. Rice co-authors include graduate students Daniel Brandenburg, Joey Butterworth and Nick Luttrell; research scientist Geary Eppley; and Pablo Yepes, a senior faculty fellow in physics and astronomy. Geurts is an associate professor of physics and astronomy.
-end-
The research is funded primarily by the Department of Energy Office of Science.

Read the paper at http://www.nature.com/nature/journal/vaop/ncurrent/full/nature15724.html

This news release can be found online at http://news.rice.edu/2015/11/04/antimatter-not-so-different-after-all/

Read the Brookhaven National Laboratory press release at https://www.bnl.gov/newsroom/news.php?a=11786

Follow Rice News and Media Relations via Twitter @RiceUNews

Related Materials:

Frank Geurts: http://report.rice.edu/sir/faculty.detail?p=7EE6540A3BE569BA4397D2410201E1D9

Rice Nuclear and Particle Physics: https://physics.rice.edu/Nuclear.aspx

Wiess School of Natural Sciences: http://naturalsciences.rice.edu

Images for download:

http://news.rice.edu/wp-content/uploads/2015/10/1026_ANTIMATTER-1-web.jpg

Scientists working at Brookhaven National Laboratory, including physicists at Rice University, have announced the first measurements of the attractive force between antiprotons. The discovery gives physicists new ways to look at the forces that bind matter and antimatter. (Credit: Brookhaven National Laboratory)

http://news.rice.edu/wp-content/uploads/2015/10/1026_ANTIMATTER-2-web.jpg

Rice University physicist Frank Geurts, left, and graduate student Kefeng Xin are part of the team that made the first measurements of the attractive force between antiprotons. Xin is a primary author of the paper that appears this week in Nature. (Credit: Jeff Fitlow/Rice University)

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,888 undergraduates and 2,610 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to https://staff.rice.edu/uploadedFiles/Staff/Public_Affairs/WhatTheyreSayingAboutRice%282%29.pdf.

David Ruth
713-348-6327
david@rice.edu

Mike Williams
713-348-6728
mikewilliams@rice.edu

Rice University

Related Big Bang Articles from Brightsurf:

Do big tadpoles turn into big frogs? It's complicated, study finds
University of Arizona researchers studied the evolution of the body sizes of frogs and their tadpoles.

A 'bang' in LIGO and Virgo detectors signals most massive gravitational-wave source yet
Researchers have detected a signal from what may be the most massive black hole merger yet observed in gravitational waves.

Analysis: Health sector, big pharma spent big on lobbying for COVID-19 funding
To date, Congress has authorized roughly $3 trillion in COVID-19 relief assistance -- the largest relief package in history.

Unequal neutron-star mergers create unique "bang" in simulations
In a series of simulations, an international team of researchers determined that some neutron star collisions not only produce gravitational waves, but also electromagnetic radiation that should be detectable on Earth.

Supermassive black holes shortly after the Big Bang: How to seed them
They are billions of times larger than our Sun: how is it possible that supermassive black holes were already present when the Universe was 'just' 800 million years old?

Big data could yield big discoveries in archaeology, Brown scholar says
Parker VanValkenburgh, an assistant professor of anthropology, curated a journal issue that explores the opportunities and challenges big data could bring to the field of archaeology.

APS tip sheet: modeling the matter after big bang expansion
Matter's fragmentation after the big bang.

Giving cryptocurrency users more bang for their buck
A new cryptocurrency-routing scheme co-invented by MIT researchers can boost the efficiency -- and, ultimately, profits -- of certain networks designed to speed up notoriously slow blockchain transactions.

The core of massive dying galaxies already formed 1.5 billion years after the Big Bang
The most distant dying galaxy discovered so far, more massive than our Milky Way -- with more than a trillion stars -- has revealed that the 'cores' of these systems had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

The 'cores' of massive galaxies had already formed 1.5 billion years after the big bang
A distant galaxy more massive than our Milky Way -- with more than a trillion stars - has revealed that the 'cores' of massive galaxies in the Universe had formed already 1.5 billion years after the Big Bang, about 1 billion years earlier than previous measurements revealed.

Read More: Big Bang News and Big Bang Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.