Scientists uncover mechanism that propels liver development after birth

November 04, 2015

Any expectant mother will tell you that she wants her baby's organs to develop properly in the womb.

What she may not realize, however, is that a child's internal organs continue to develop for months and years after birth. This critical period is full of cellular changes that transform the organization and function of most tissues. But the exact mechanisms underlying postnatal organ maturation are still a mystery.

Now researchers report that liver cells utilize a mechanism called "alternative splicing," which alters how genes are translated into the proteins that guide this critical period of development.

"This mechanism is different from simply turning gene expression on or of," said University of Illinois Biochemistry Professor Auinash Kalsotra, who led the study.

"Turning gene expression on or off leads to a quantitative change in gene expression - you make more or less of a particular RNA. Alternative splicing, however, provides means to produce a qualitative change. You are making the same amounts of RNA but of different kinds."

Alternative splicing is a lot like building with LEGOs, where bits and pieces of DNA (called exons) can be pieced together or have parts removed to produce different assortments of proteins.

"The diversity of RNAs and proteins generated in this way allows the liver to acquire new functions tailored for the adult needs," Kalsotra said.

Using a powerful technology called next-generation RNA sequencing, the researchers simultaneously looked at thousands of genes, pinpointing the ones that undergo regulated changes in alternative splicing as the liver develops.

The findings, which appear in the journal Nature Communications, also identified an RNA binding protein, ESRP2, which controls this developmental program in the liver.

"It turns out that ESRP2 is absent in the fetal liver and is only turned on after birth to activate splicing of genes that are particularly important for liver growth and functionality," Kalsotra said.

Working in cell culture, the researchers spurred liver cells to express the ESRP2 protein, and observed that the cells began to display adult-like characteristics.

"We were amazed to see how clean the results were," Kalsotra said. "In the absence of ESRP2, the adult liver remains immature. This tells us how important this RNA binding protein is for optimizing adult functions."

This is the first study to provide a direct link between splicing regulation and liver maturation, he said.

"We are excited to investigate this link further and determine the exact function of these splicing switches in postnatal liver development," said Kalsotra, who also is an affiliate of the Carl R. Woese Institute for Genomic Biology at Illinois.
Amruta Bhate, a graduate student in the Kalsotra lab, and Darren Parker, an Illinois biochemistry undergraduate student, spearheaded this work. The research team also included Waqar Arif, Edrees H. Rashan, Sandip Chorghade, Anthony Chau and Sayeepriyadarshini Anakk, from the University of Illinois, Urbana-Champaign; Thomas W. Bebee and Russ P. Carstens, from University of Pennsylvania; and Jaegyoon Ahn, Jae-Hyung Lee, and Xinshu Xiao from University of California, Los Angeles. Parker and Chau are currently graduate students at Massachusetts Institute of Technology and University of California, Los Angeles respectively.

The National Institutes of Health, March of Dimes, and Roy J. Carver Charitable Trust funded this research.

The paper "ESRP2 Controls an Adult Splicing Program in Hepatocytes to Support Postnatal Liver Maturation" appears in Nature Communications.

University of Illinois at Urbana-Champaign

Related Proteins Articles from Brightsurf:

New understanding of how proteins operate
A ground-breaking discovery by Centenary Institute scientists has provided new understanding as to the nature of proteins and how they exist and operate in the human body.

Finding a handle to bag the right proteins
A method that lights up tags attached to selected proteins can help to purify the proteins from a mixed protein pool.

Designing vaccines from artificial proteins
EPFL scientists have developed a new computational approach to create artificial proteins, which showed promising results in vivo as functional vaccines.

New method to monitor Alzheimer's proteins
IBS-CINAP research team has reported a new method to identify the aggregation state of amyloid beta (Aβ) proteins in solution.

Composing new proteins with artificial intelligence
Scientists have long studied how to improve proteins or design new ones.

Hero proteins are here to save other proteins
Researchers at the University of Tokyo have discovered a new group of proteins, remarkable for their unusual shape and abilities to protect against protein clumps associated with neurodegenerative diseases in lab experiments.

Designer proteins
David Baker, Professor of Biochemistry at the University of Washington to speak at the AAAS 2020 session, 'Synthetic Biology: Digital Design of Living Systems.' Prof.

Gone fishin' -- for proteins
Casting lines into human cells to snag proteins, a team of Montreal researchers has solved a 20-year-old mystery of cell biology.

Coupled proteins
Researchers from Heidelberg University and Sendai University in Japan used new biotechnological methods to study how human cells react to and further process external signals.

Understanding the power of honey through its proteins
Honey is a culinary staple that can be found in kitchens around the world.

Read More: Proteins News and Proteins Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to