Nav: Home

Study challenges model of Alzheimer's disease progression

November 04, 2016

Alzheimer's disease is a neurodegenerative disorder for which, despite years of research, there are no effective treatments or cures.

However, recent breakthroughs in molecular genetics have shown that the disease may spread, like an infection, across closely connected areas of the brain. These findings underscore the need for research aimed at tracking its spread to the earliest points of origin in the brain, so therapies that target those areas can be developed.

An international collaboration between Nathan Spreng, Cornell assistant professor of human development and the Rebecca Q. and James C. Morgan Sesquicentennial Faculty Fellow in the College of Human Ecology, and Taylor Schmitz of the University of Cambridge's Cognitive Brain Sciences Unit, sheds light on the basal forebrain region, where the degeneration of neural tissue caused by Alzheimer's disease appears even before cognitive and behavioral symptoms of the disease emerge.

Their paper, "Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer's pathology," is published Nov. 4 in Nature Communications. Data used for their work were obtained from the Alzheimer's Disease Neuroimaging Initiative database.

The basal forebrain contains very large and densely connected neurons that are particularly vulnerable to the disease. Schmitz and Spreng show that, as Alzheimer's progresses, degeneration of the basal forebrain predicts subsequent degeneration in temporal lobe areas of the brain involved in memory. This pattern is consistent with other research showing that Alzheimer's indeed spreads across brain regions over time, but the study challenges a widely held belief that the disease originates in the temporal lobe.

"We're hoping that this work pushes a bit of a reorganization of the field itself, to reappraise where the disease originates," Spreng said. "That could open up new avenues for intervention; certainly it would for detection."

Their report is the product of a two-year study of a large sample of age-matched older adults. Within this sample, one group was cognitively normal, according to standard tests, while others were characterized by different levels of cognitive impairment:
  • individuals with mild cognitive impairment (MCI) who did not progress to Alzheimer's disease;

  • MCI individuals who progressed to Alzheimer's after one year; and

  • individuals classified as having Alzheimer's throughout the duration of the study.

Through analysis of high-resolution anatomical magnetic resonance imaging of brain volumes, taken three times over the two-year study period, the researchers were able to determine that individuals with MCI or Alzheimer's showed greater losses in gray matter volume in both the basal forebrain and temporal lobe, compared with cognitively normal controls. Intriguingly, they showed that over the two-year period, degeneration of neural tissue in the basal forebrain predicted subsequent tissue degeneration in the temporal lobe, but not the other way around.

A sampling of spinal fluid from healthy adults can detect an abnormal level of beta amyloid, indicative of Alzheimer's, Spreng said. Test results showed that temporal lobes looked the same regardless of amyloid level, but the basal forebrain showed notable degeneration among those seemingly healthy adults with abnormal amyloid levels.

Spreng admits that being able to predict who will get the disease doesn't mean a lot without a protocol to treat and, ultimately, cure the disease. "And it might induce more anxiety," he said. But the more knowledge that can be gained now, he said, the better.

"Future molecular genetics work holds strong promise for developing therapeutic strategies to prevent the spread of pathology at stages of Alzheimer's preceding cognitive decline," Schmitz said. "Our clarification of an earlier point of Alzheimer's propagation is therefore of utmost importance for guiding endeavors to combat this devastating disease."
-end-
This work was funded by grants from the National Institutes of Health and the Alzheimer's Association.

Cornell University

Related Brain Articles:

Study describes changes to structural brain networks after radiotherapy for brain tumors
Researchers compared the thickness of brain cortex in patients with brain tumors before and after radiation therapy was applied and found significant dose-dependent changes in the structural properties of cortical neural networks, at both the local and global level.
Blue Brain team discovers a multi-dimensional universe in brain networks
Using a sophisticated type of mathematics in a way that it has never been used before in neuroscience, a team from the Blue Brain Project has uncovered a universe of multi-dimensional geometrical structures and spaces within the networks of the brain.
New brain mapping tool produces higher resolution data during brain surgery
Researchers have developed a new device to map the brain during surgery and distinguish between healthy and diseased tissues.
Newborn baby brain scans will help scientists track brain development
Scientists have today published ground-breaking scans of newborn babies' brains which researchers from all over the world can download and use to study how the human brain develops.
New test may quickly identify mild traumatic brain injury with underlying brain damage
A new test using peripheral vision reaction time could lead to earlier diagnosis and more effective treatment of mild traumatic brain injury, often referred to as a concussion.
This is your brain on God: Spiritual experiences activate brain reward circuits
Religious and spiritual experiences activate the brain reward circuits in much the same way as love, sex, gambling, drugs and music, report researchers at the University of Utah School of Medicine.
Brain scientists at TU Dresden examine brain networks during short-term task learning
'Practice makes perfect' is a common saying. We all have experienced that the initially effortful implementation of novel tasks is becoming rapidly easier and more fluent after only a few repetitions.
Balancing time & space in the brain: New model holds promise for predicting brain dynamics
A team of scientists has extended the balanced network model to provide deep and testable predictions linking brain circuits to brain activity.
New view of brain development: Striking differences between adult and newborn mouse brain
Spikes in neuronal activity in young mice do not spur corresponding boosts in blood flow -- a discovery that stands in stark contrast to the adult mouse brain.
Map of teenage brain provides evidence of link between antisocial behavior and brain development
The brains of teenagers with serious antisocial behavior problems differ significantly in structure to those of their peers, providing the clearest evidence to date that their behavior stems from changes in brain development in early life, according to new research led by the University of Cambridge and the University of Southampton, in collaboration with the University of Rome Tor Vergata in Italy.

Related Brain Reading:

The Brain That Changes Itself: Stories of Personal Triumph from the Frontiers of Brain Science
by Norman Doidge (Author)

Brain Maker: The Power of Gut Microbes to Heal and Protect Your Brain - for Life
by Hachette Audio

The Human Brain Book: An Illustrated Guide to its Structure, Function, and Disorders
by Rita Carter (Author)

Grain Brain: The Surprising Truth About Wheat, Carbs, and Sugar - Your Brain's Silent Killers
by Hachette Audio

The Whole-Brain Child: 12 Revolutionary Strategies to Nurture Your Child's Developing Mind
by Daniel J. Siegel (Author), Tina Payne Bryson (Author)

Brain Food: The Surprising Science of Eating for Cognitive Power
by Lisa Mosconi PhD (Author)

The Brain: The Story of You
by David Eagleman (Author)

Neuroscience: Exploring the Brain
by Mark F. Bear (Author), Barry W. Connors (Author), Michael A. Paradiso (Author)

Change Your Brain, Change Your Life (Revised and Expanded): The Breakthrough Program for Conquering Anxiety, Depression, Obsessiveness, Lack of Focus, Anger, and Memory Problems
by Daniel G. Amen M.D. (Author)

The Brain's Way of Healing: Remarkable Discoveries and Recoveries from the Frontiers of Neuroplasticity
by Norman Doidge (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".