Nav: Home

Laser particles could provide sharper images of tissues

November 04, 2016

CAMBRIDGE, Mass. -- A new imaging technique developed by scientists at MIT, Harvard University, and Massachusetts General Hospital (MGH) aims to illuminate cellular structures in deep tissue and other dense and opaque materials. Their method uses tiny particles embedded in the material, that give off laser light.

The team synthesized these "laser particles" in the shape of tiny chopsticks, each measuring a small fraction of a human hair's width. The particles are made from lead iodide perovskite -- a material that is also used in solar panels, and that efficiently absorbs and traps light. When the researchers shine a laser beam at the particles, the particles light up, giving off normal, diffuse fluorescent light. But if they tune the incoming laser's power to a certain "lasing threshold," the particles will instantly generate laser light.

The researchers, led by MIT graduate student Sangyeon Cho, demonstrated they were able to stimulate the particles to emit laser light, creating images at a resolution six times higher than that of current fluorescence-based microscopes.

"That means that if a fluorescence microscope's resolution is set at 2 micrometers, our technique can have 300-nanometer resolution -- about a sixfold improvement over regular microscopes," Cho says. "The idea is very simple but very powerful and can be useful in many different imaging applications."

Cho and his colleagues have published their results in the journal Physical Review Letters. His co-authors include Seok Hyun Yun, a professor at Harvard; Nicola Martino, a research fellow at Harvard and MGH's Wellman Center for Photomedicine; and Matjaž Humar, a researcher at the Jozef Stefan Institute. The research was done as part of the Harvard-MIT Division of Health Sciences and Technology.

A light in the dark

When you shine a flashlight in a darkened room, that light appears as a relatively diffuse, hazy beam of white light, representing a jumble of different wavelengths and colors. In stark contrast, laser light is a pointedly focused, monochromatic beam of light, of a specific frequency and color.

In conventional fluorescence microscopy, scientists may inject a sample of biological tissue with particles filled with fluorescent dyes. They then point a laser beam through a lens that directs the beam through the tissue, causing any fluorescent particles in its path to light up.

But these particles, like microscopic flashlights, produce a relatively indistinct, fuzzy glow. If such particles were to emit more focused, laser-like light, they might produce sharper images of deep tissues and cells. In recent years, researchers have developed laser-light-emitting particles, but Cho's work is the first to apply these unique particles to imaging applications.

Chopstick lasers

The team first synthesized tiny, 6-micron-long nanowires from lead iodide perovskite, a material that does a good job of trapping and concentrating fluorescent light. The particles' rod-shaped geometry -- which Cho describes as "chopstick-like" -- can allow a specific wavelength of light to bounce back and forth along the particles' length, generating a standing wave, or very regular, concentrated pattern of light, similar to a laser.

The researchers then built a simple optical setup, similar to conventional fluorescence microscopes, in which a laser beam is pumped from a light source, through a lens, and onto a sample platform containing the laser particles.

For the most part, the researchers found that the particles emitted diffuse fluorescent light in response to the laser stimulation, similar to conventional fluorescent dyes, at low pump power. However, when they tuned the laser's power to a certain threshold, the particles lit up considerably, emitting much more laser light.

Cho says that the new optical technique, which they have named LAser particle Stimulated Emission (LASE) microscopy, could be used to image a specific focal plane, or a particular layer of biological tissue. Theoretically, he says, scientists can shine a laser beam into a three-dimensional sample of tissue embedded throughout with laser particles, and use a lens to focus the beam at a specific depth. Only those particles in the beam's focus will absorb enough light or energy to turn on as lasers themselves. All other particles upstream of the path's beam should absorb less energy and only emit fluorescent light.

"We can collect all this stimulated emission and can distinguish laser from fluorescent light very easily using spectrometers," Cho says. "We expect this will be very powerful when applied to biological tissue, where light normally scatters all around, and resolution is devastated. But if we use laser particles, they will be the narrow points that will emit laser light. So we can distinguish from the background and can achieve good resolution."

To implement this technique in living tissue, Cho says laser particles would have to be biocompatible, which lead iodide perovskite materials are not. However, the team is currently investigating ways to manipulate cells themselves to glow like lasers.

"Our idea is, why not use the cell as an internal light source?" Cho says. "We're starting to think about that problem."
-end-


Massachusetts Institute of Technology

Related Laser Articles:

The sharpest laser in the world
With a linewidth of only 10 mHz, the laser that the researchers from the Physikalisch-Technische Bundesanstalt (PTB) have now developed together with US researchers from JILA, a joint institute of the National Institute of Standards and Technology and the University of Colorado Boulder, has established a new world record.
Biggest X-ray laser in the world generates its first laser light
European XFEL, the biggest X-ray laser in the world, has generated its first X-ray laser light.
Where does laser energy go after being fired into plasma?
An outstanding conundrum on what happens to the laser energy after beams are fired into plasma has been solved in newly-published research at the University of Strathclyde.
Over-the-counter laser pointers a threat to eyesight
Some laser pointers that can be bought over the counter are unsafe -- to the point that they can cause blindness.
Introducing the disposable laser
Since lasers were invented more than 50 years ago, they have transformed a diverse swath of technology -- from CD players to surgical instruments.
A laser for your eyes
A team of the Lomonosov Moscow State University scientists and the Belarusian National Technical University has created a unique laser, which is a compact light source with wavelengths harmless to the human eye.
New laser to shine light on remote sensing
A revolutionary new type of laser developed by the University of Adelaide is promising major advances in remote sensing of greenhouse gases.
Laser beams with a 'twist'
Using geometric phase inside lasers for the first time, researchers find a way to change the orbital angular momentum of laser beams.
New laser achieves wavelength long sought by laser developers
Researchers at the University of Bath, United Kingdom have created a new kind of laser capable of pulsed and continuous mid-infrared emission between 3.1 and 3.2 microns, a spectral range that has long presented a major challenge for laser developers.
New laser achieves wavelength long sought by laser developers
Researchers at the University of Bath, United Kingdom have created a new kind of laser capable of pulsed and continuous mid-infrared (IR) emission between 3.1 and 3.2 microns, a spectral range that has long presented a major challenge for laser developers.

Related Laser Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...