Nav: Home

Detour via gravitational lens makes distant galaxy visible

November 04, 2016

Never before have astrophysicists measured light of such high energy from a celestial object so far away. Around 7 billion years ago, a huge explosion occurred at the black hole in the center of a galaxy. This was followed by a burst of high-intensity gamma rays. A number of telescopes, MAGIC included, have succeeded in capturing this light. An added bonus: it was thus possible to reconfirm Einstein's General Theory of Relativity, as the light rays encountered a less distant galaxy en route to Earth - and were deflected by this so-called gravitational lens.

The object QSO B0218+357 is a blazar, a specific type of black hole. Researchers now assume that there is a supermassive black hole at the center of every galaxy. Black holes, into which matter is currently plunging are called active black holes. They emit extremely bright jets. If these bursts point towards Earth, the term blazar is used.

Full moon prevents the first MAGIC observation

The event now described in "Astronomy & Astrophysics" took place 7 billion years ago, when the universe was not even half its present age. "The blazar was discovered initially on 14 July 2014 by the Large Area Telescope (LAT) of the Fermi satellite," explains Razmik Mirzoyan, scientist at the Max Planck Institute for Physics and spokesperson for the MAGIC collaboration. "The gamma ray telescopes on Earth immediately fixed their sights on the blazer in order to learn more about this object."

One of these telescopes was MAGIC, on the Canary Island of La Palma, specialized in high-energy gamma rays. It can capture photons - light particles - whose energy is 100 billion times higher than the photons emitted by our Sun and a thousand times higher than those measured by Fermi-LAT. The MAGIC scientists were initially out of luck, however: A full moon meant the telescope was not able to operate during the time in question.

Gravitational lens deflects ultra-high-energy photons

Eleven days later, MAGIC got a second chance, as the gamma rays emitted by QSO B0218+357 did not take the direct route to Earth: One billion years after setting off on their journey, they reached the galaxy B0218+357G. This is where Einstein's General Theory of Relativity came into play.

This states that a large mass in the universe, a galaxy, for example, deflects light of an object behind it. In addition, the light is focused as if by a gigantic optical lens - to a distant observer, the object appears to be much brighter, but also distorted. The light beams also need different lengths of time to pass through the lens, depending on the angle of observation.

This gravitational lens was the reason that MAGIC was able, after all, to measure QSO B0218+357 - and thus the most distant object in the high-energy gamma ray spectrum. "We knew from observations undertaken by the Fermi space telescope and radio telescopes in 2012 that the photons that took the longer route would arrive 11 days later," says Julian Sitarek (University of ?ódz, Poland), who led this study. "This was the first time we were able to observe that high-energy photons were deflected by a gravitational lens."

Doubling the size of the gamma-ray universe

The fact that gamma rays of such high energy from a distant celestial body reach Earth's atmosphere is anything but obvious. "Many gamma rays are lost when they interact with photons which originate from galaxies or stars and have a lower energy," says Mirzoyan. "With the MAGIC observation, the part of the universe that we can observe via gamma rays has doubled."

The fact that the light arrived on Earth at the time calculated could rattle a few theories on the structure of the vacuum - further investigations, however, are required to confirm this. "The observation currently points to new possibilities for high-energy gamma ray observatories - and provides a pointer for the next generation of telescopes in the CTA project," says Mirzoyan, summing up the situation.
-end-
Contact:

Dr. Razmik Mirzoyan
Max Planck Institute for Physics
E-mail: razmik.mirzoyan@mpp.mpg.de
Phone: +49 89 32354-328

Max Planck Institute for Physics

Related Black Hole Articles:

Scientists make waves with black hole research
Scientists at the University of Nottingham have made a significant leap forward in understanding the workings of one of the mysteries of the universe.
Collapsing star gives birth to a black hole
Astronomers have watched as a massive, dying star was likely reborn as a black hole.
When helium behaves like a black hole
A team of scientists has discovered that a law controlling the bizarre behavior of black holes out in space -- is also true for cold helium atoms that can be studied in laboratories.
Star in closest orbit ever seen around black hole
Astronomers have found evidence of a star that whips around a likely black hole twice an hour.
Tail of stray black hole hiding in the Milky Way
By analyzing the gas motion of an extraordinarily fast-moving cosmic cloud in a corner of the Milky Way, Astronomers found hints of a wandering black hole hidden in the cloud.
Hubble gazes into a black hole of puzzling lightness
The beautiful spiral galaxy visible in the center of the image is known as RX J1140.1+0307, a galaxy in the Virgo constellation imaged by the NASA/ESA Hubble Space Telescope, and it presents an interesting puzzle.
Clandestine black hole may represent new population
Astronomers have combined data from NASA's Chandra X-ray Observatory, the Hubble Space Telescope and the National Science Foundation's Karl G.
When will a neutron star collapse to a black hole?
Astrophysicists from Goethe-University Frankfurt have found a simple formula for the maximum mass of a rotating neutron star and hence answered a question that had been open for decades.
Behemoth black hole found in an unlikely place
Astronomers have uncovered a near-record breaking supermassive black hole, weighing 17 billion suns, in an unlikely place: in the center of a galaxy in a sparsely populated area of the universe.
Behemoth black hole found in an unlikely place
Astronomers have uncovered one of the biggest supermassive black holes, with the mass of 17 billion Suns, in an unlikely place: the centre of a galaxy that lies in a quiet backwater of the Universe.

Related Black Hole Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...