Nav: Home

Light drives single-molecule nanoroadsters

November 04, 2016

Scientists at Rice University and at the University of Graz, Austria, are driving three-wheeled, single-molecule "nanoroadsters" with light and, for the first time, seeing how they move.

The Rice lab of nanocar inventor and chemist James Tour synthesized light-driven nanocars six years ago, but with the aid of experimental physicists in Austria, they're now able to drive fleets of single-molecule vehicles at once.

A report on the work appears in the American Chemical Society journal ACS Nano.

"It is exciting to see that motorized nanoroadsters can be propelled by their light-activated motors," said Tour, who introduced nanocars in 2005 and motorized them a year later. "These three-wheelers are the first example of light-powered nanovehicles being observed to propel across a surface by any method, let alone by scanning tunneling microscopy."

Rather than drive them chemically or with the tip of a tunneling microscope, as they will do with other vehicles in the upcoming international NanoCar Race in Toulouse, France, the researchers used light at specific wavelengths to move their nanoroadsters along a copper surface. The vehicles have rear-wheel molecular motors that rotate in one direction when light hits them. The rotation propels the vehicle much like a paddle wheel on water.

The team led by Tour and Leonhard Grill, a professor at the University of Graz and formerly at the Fritz-Haber-Institute, Berlin, used wavelength-sensitive modified motors invented by Dutch scientist Bernard Feringa, who shared this year's Nobel Prize in chemistry for his molecular machine.

Remote control is key to the cars' useful abilities. "If we have to 'wire' the car to a power source, like an electron beam, we would lose a lot of the cars' functionality," Tour said. "Powering them with light frees them to be driven wherever one can shine a light -- and eventually we hope they will carry cargo."

Another advantage is the ability to activate fleets of nanocars at once. "This is precisely what we seek -- to use a light to activate motors and have swarms of nanovehicles moving across the surface, made directional through electric field gradients," Tour said. "This would permit us the future prospect of using nanomachines like ants that work collectively to perform construction."

Grill said remote control by light eliminates the need for a local probe that would have to address the molecules one by one. "Additionally, no 'fuel' molecules are required that would contaminate the surface and modify the diffusion properties," he said.

Tour has used modified Feringa's motors to power his lab's nanosubmersibles. In this case, the motor is the back wheel. He said the three-wheeled configuration simplifies its use because larger nanocars are more difficult to put onto an imaging surface and often dissociated during deposition under vacuum, according to Grill.

Experiments by lead author Alex Saywell of the Grill group on nanoroadsters made at Rice demonstrated a need for a fine balance of light and temperature to allow "enhanced diffusion" of the molecules in a vacuum.

Grill said using light to drive nanomachines offers a fundamental advantage -- the ability to selectively induce motion because of the motors' sensitivity to wavelength. Ultraviolet light at 266 nanometers doubled the roadsters' movement compared with "control" roadster molecules without motors. At 355 nanometers, it tripled.

The roadsters, made of 112 atoms, reached a top speed of 23 nanometers per hour.

A surface activation temperature of 161 kelvins (minus 170 degrees Fahrenheit) proved best for driving conditions. If the temperature is too cold, the roadsters would stick to the surface; too warm and they would diffuse randomly without help from the motor.

"We were surprised by the very clear correlation of the enhanced motion to the presence of the motor, the need for both heat and light to activate this motion -- in perfect agreement with the concept of the Feringa motor -- and the wavelength sensitivity that nicely fit our expectations from spectroscopy in solution," Grill said.
-end-
Co-authors are Rice alumni Víctor García-López and Pinn-Tsong Chiang, and Anne Bakker, Johannes Mielke, Takashi Kumagai and Martin Wolf of the Max Planck Society, Berlin. Saywell is now the Marie Curie Research Fellow at University of Nottingham, United Kingdom. Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of computer science and of materials science and nanoengineering at Rice.

The National Science Foundation, the Marie Curie Intra-European Fellowship and the German Science Foundation supported the research.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acsnano.6b05650

This news release can be found online at http://news.rice.edu/2016/11/04/light-drives-single-molecule-nanoroadsters/

Follow Rice News and Media Relations via Twitter @RiceUNews

Related materials:

Tour Group at Rice: http://tournas.rice.edu/website/

Wiess School of Natural Sciences: http://natsci.rice.edu

Nanoscale Science Group (Grill): http://www.nanograz.com

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for happiest students and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.

Rice University

Related Molecules Articles:

The inner lives of molecules
Researchers from Canada, the UK and Germany have developed a new experimental technique to take 3-D images of molecules in action.
Novel technique helps ID elusive molecules
Stuart Lindsay, a researcher at Arizona State University's Biodesign Institute, has devised a clever means of identifying carbohydrate molecules quickly and accurately.
How solvent molecules cooperate in reactions
Molecules from the solvent environment that at first glance seem to be uninvolved can be essential for chemical reactions.
A new way to display the 3-D structure of molecules
Berkeley Lab and UC Berkeley Researchers have developed nanoscale display cases that enables new atomic-scale views of hard-to-study chemical and biological samples.
Bending hot molecules
Hot molecules are found in extreme environments such as the edges of fusion reactors.
More Molecules News and Molecules Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#534 Bacteria are Coming for Your OJ
What makes breakfast, breakfast? Well, according to every movie and TV show we've ever seen, a big glass of orange juice is basically required. But our morning grapefruit might be in danger. Why? Citrus greening, a bacteria carried by a bug, has infected 90% of the citrus groves in Florida. It's coming for your OJ. We'll talk with University of Maryland plant virologist Anne Simon about ways to stop the citrus killer, and with science writer and journalist Maryn McKenna about why throwing antibiotics at the problem is probably not the solution. Related links: A Review of the Citrus Greening...