Nav: Home

Genetic cause for shift work fatigue discovered

November 04, 2016

Some people adapt easily to shift work, but not everyone can handle constant disruptions to their daily rhythm. Finnish researchers have now found that a melatonin receptor gene influences tolerance to shift work.

Published in the journal Sleep, the new study is the first time the genetic factors underlying poor tolerance to shift work were systematically examined. Covering the entire genome, the study discovered that a common variation in the melatonin receptor 1A (MTNR1A) gene is linked to the job-related exhaustion experienced by shift workers.

Shift work often disrupts the circadian rhythm, which can lead to sleep disorders and daytime fatigue.

The study was led by Professor Tiina Paunio, University of Helsinki, and involved Finnish shift workers from many different lines of work. The differences in the job-related exhaustion reported by employees were contrasted with genetic differences in their entire genome.

The link to the melatonin receptor gene was discovered in a group of 176 shift workers included in the national Health 2000 survey. The connection was also found in a group of 577 shift workers covering rest of the shift workers from the Health 2000 survey as well as shift workers in care work and aviation.

The study also established that the risk variation of the melatonin receptor 1A (MTNR1A) gene is probably related to the methylation of DNA in the regulatory sequence of the MTNR1A gene as well as the weaker expression of the MTNR1A gene. The methylation of DNA is one of the epigenetic mechanisms regulating the functioning of the genome, influenced by not only by variations in DNA sequence, but also environmental factors such as fluctuations in the circadian rhythm.

As it results in a smaller number of melatonin receptors, the risk variant of the gene can cause weaker natural melatonin signalling, one of the regulatory mechanisms in stabilising the circadian rhythm.

The influence of the risk variant of the MTNR1A gene may explain the degree to which light exposure at night disrupts the circadian rhythm of shift workers. "The variant we have now discovered can only explain a small part of the variation between individuals, and it cannot be used as a basis to determine a person's tolerance to shift work," Paunio points out.
-end-
The study was conducted at the National Institute for Health and Welfare (THL) in cooperation with the University of Helsinki, the Finnish Institute of Occupational Health as well as the occupational health care provider for Finnair.

University of Helsinki

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
Researchers are first to see DNA 'blink'
Northwestern University biomedical engineers have developed imaging technology that is the first to see DNA 'blink,' or fluoresce.
Finding our way around DNA
A Salk team developed a tool that maps functional areas of the genome to better understand disease.
A 'strand' of DNA as never before
In a carefully designed polymer, researchers at the Institute of Physical Chemistry of the Polish Academy of Sciences have imprinted a sequence of a single strand of DNA.
Doubling down on DNA
The African clawed frog X. laevis genome contains two full sets of chromosomes from two extinct ancestors.
'Poring over' DNA
Church's team at Harvard's Wyss Institute for Biologically Inspired Engineering and the Harvard Medical School developed a new electronic DNA sequencing platform based on biologically engineered nanopores that could help overcome present limitations.

Related Dna Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#529 Do You Really Want to Find Out Who's Your Daddy?
At least some of you by now have probably spit into a tube and mailed it off to find out who your closest relatives are, where you might be from, and what terrible diseases might await you. But what exactly did you find out? And what did you give away? In this live panel at Awesome Con we bring in science writer Tina Saey to talk about all her DNA testing, and bioethicist Debra Mathews, to determine whether Tina should have done it at all. Related links: What FamilyTreeDNA sharing genetic data with police means for you Crime solvers embraced...