From cone snail venom to pain relief

November 04, 2019

Conotoxins are bioactive peptides found in the venom that marine cone snails produce for prey capture and defense. They are used as pharmacological tools to study pain signalling and have the potential to become a new class of analgesics. To date, more than 10,000 conotoxin sequences have been discovered. Associate Professor Markus Muttenthaler from the Faculty of Chemistry at the University of Vienna and his colleagues from the University of Queensland in Australia are experts in the field of venom drug discovery and have now provided an overview on the status quo of conotoxin research in the top-of-its-class journal "Chemical Reviews". In another recently published study, the researchers have furthermore developed fluorescently labelled conotoxin versions to visualise pain receptors in cells.

The marine predatory cone snail is well-known for its effective envenomation strategy, which helps the relatively slow-moving animal to catch their prey such as fish or molluscs and to defend itself. The cone snail paralyses and kills their prey with the help of a very selective and potent cocktail of venom peptides, which is injected into prey through a harpoon-like needle.

"Cone snails can control their venom composition depending if they hunt or defend themselves," says Markus Muttenthaler from the Institute of Biological Chemistry at the University of Vienna. "For pain research, we are particularly interested in the venom of a defending cone snail, as its composition is aimed at causing pain and its individual components can be used to study pain pathways," the ERC Starting Grant awardee states.

High diversity of species and compounds

To date, an estimated 750 species of cone snails are known. A typical venom contains hundreds to thousands of bioactive peptides, with typical lengths of 10 to 40 amino acids. These conotoxins display well-defined, protein-like structures, which are stabilised through multiple disulfide bond frameworks. Conotoxins are also active on human receptors (e.g., ion channels), which is of particular interest as they thus can be used as tools to study pain pathways in humans.

"Conotoxins have revolutionised pain research since their extraordinary potency and selectivity enables us to study the individual subtypes of ion channels, which was not possible before," explains Markus Muttenthaler. With the help of conotoxins, researchers can now define the physiological as well as pathological relevance of the different receptor subtypes.

One conotoxin has already received FDA-approval (Prialt®) for the treatment of severe chronic pain. It is directly administered to the spinal cord where it specifically blocks a pain transmitting ion channel subtype - "it is 1,000 times more potent than morphine and triggers no symptoms of dependence, which is a big problem with opioid drugs", says Muttenthaler. Current research focuses now on conotoxins that could already target nerve endings outside the spinal cord, which would facilitate administration. "This would enable us to intercept the pain signal before it is transmitted into the central nervous system."

Using conotoxins for new methods

New analytical advances in the fields of venomics, proteomics and transcriptomics have led to the discovery of many new conotoxin sequences in recent years. The synthesis and pharmacological characterisation, however, is comparatively more time-consuming.

Conotoxins can furthermore be functionalised and provide outstanding leads for new molecular probes: In another paper published in the "Australian Journal of Chemistry", the researchers developed a new methodology to label conotoxins and use them to visualise ion channels in cells. These tools are important for a better understanding of the complex biology behind pain, which is a leading cause of disability in the world.
-end-
Publications:

Conotoxins: Chemistry and Biology: Ai-Hua Jin, Markus Muttenthaler, Sebastien Dutertre, Himaya Siddhihalu Wickrama Hewage, Quentin Kaas, David J. Craik, Richard J. Lewis, and Paul F. Alewood. Chemical Reviews, Publication Date: 21 Oct. 2019, DOI:10.1021/acs.chemrev.9b00207.

https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.9b00207

On-resin strategy to label α-conotoxins: Cy5-RgIA, a potent α9α10 nicotinic acetylcholine receptor imaging probe: Markus Muttenthaler, Simon Nevin, Marco Inserra, Richard Lewis, David Adams, and Paul Alewood. Australian Journal of Chemistry (accepted for publication).

https://www.publish.csiro.au/CH/justaccepted/CH19456

University of Vienna

Related Spinal Cord Articles from Brightsurf:

Stem cells can help repair spinal cord after injury
Spinal cord injury often leads to permanent functional impairment. In a new study published in the journal Science researchers at Karolinska Institutet in Sweden show that it is possible to stimulate stem cells in the mouse spinal cord to form large amounts of new oligodendrocytes, cells that are essential to the ability of neurons to transmit signals, and thus to help repair the spinal cord after injury.

Improving treatment of spinal cord injuries
A group led by UC Riverside bioengineering professor Victor G.

Spinal cord gives bio-bots walking rhythm
Miniature biological robots are making greater strides than ever, thanks to the spinal cord directing their steps.

Co-delivery of IL-10 and NT-3 to enhance spinal cord injury repair
Spinal cord injury (SCI) creates a complex microenvironment that is not conducive to repair; growth factors are in short supply, whereas factors that inhibit regeneration are plentiful.

Locomotor engine in the spinal cord revealed
Researchers at Karolinska Institutet in Sweden have revealed a new principle of organization which explains how locomotion is coordinated in vertebrates akin to an engine with three gears.

Neurological signals from the spinal cord surprise scientists
With a study of the network between nerve and muscle cells in turtles, researchers from the University of Copenhagen have gained new insight into the way in which movements are generated and maintained.

An 'EpiPen' for spinal cord injuries
An injection of nanoparticles can prevent the body's immune system from overreacting to trauma, potentially preventing some spinal cord injuries from resulting in paralysis.

From spinal cord injury to recovery
Spinal cord injury disconnects communication between the brain and the spinal cord, disrupting control over part of the body.

Transplanting adult spinal cord tissues: A new strategy of repair spinal cord injury
Spinal cord injury repair is one of the most challenging medical problems, and no effective therapeutic methods has been developed.

Gene medication to help treat spinal cord injuries
The two-gene medication has been proven to recover motor functions in rats.

Read More: Spinal Cord News and Spinal Cord Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.