Gene-OFF switches tool up synthetic biology

November 04, 2019

(BOSTON) - In the quest for tomorrow's diagnostics, therapeutics, and bioproduced drugs and fine chemicals, synthetic biologists are assembling artificial networks of genes and modular regulatory elements, similar to the electronic circuits in computer chips. Introduced into cells, these networks can sense biological signals such as viruses and inflammation markers, or chemical substances, and respond by producing a reporter signal, therapeutic protein, or enzyme that converts one substance into another.

Taking a step forward, a team from Harvard's Wyss Institute for Biologically Inspired Engineering and Arizona State University (ASU), Tempe, recently designed "Ribocomputing devices" that can sense multiple biological RNA signals simultaneously and act as "molecular logic boards." Only if a certain combination of input signals is present, does the device produce a desired output protein. Another desirable regulatory element for synthetic biology would be a device that can do exactly the opposite - effectively shut down the expression of protein in response to a stimulus when it is no longer wanted.

Now, the team together with researchers from Northwestern University, Evanston, Illinois and the Technical University of Munich, has developed two types of programmable repressor elements that can switch off the production of an output protein in synthetic biology circuits by up to 300-fold in response to almost any triggering nucleotide sequence. The researchers created a library of more than 100 repressors to choose from, with up to 15 that can work in parallel in a single circuit. In addition, they combined up to four repressor elements in universal NAND (NOT-AND) and NOR (NOT-OR) gates in complex molecular logic boards computing the presence of multiple incoming nucleotide signals to silence an outgoing fluorescent reporter signal. The study is published in Nature Chemical Biology.

"Our Repressor Switch devices add a new capability to the synthetic biology toolbox for researchers designing synthetic biological circuits," said co-corresponding author and Wyss Institute Core Faculty member Peng Yin, Ph.D. "They have the potential to usher in the possibility of more sophisticated and accurate applications in different areas of next-generation diagnostics, environmental reporting, as well as biomanufacturing." Yin also is Professor of Systems Biology at Harvard Medical School (HMS) and a lead of the Wyss Institute's Molecular Robotics Initiative.

The team previously developed "Toehold Switches", de novo-designed RNA strands that detect trigger RNAs with virtually arbitrary sequences to activate translation of a linked protein-coding RNA sequence into a protein. Complementary regions in the Toehold Switches form a hairpin-like structure that conceals short sequences allowing the ribosome, the molecular machine that translates RNA into protein sequence, to bind to the device and start its job. Incoming trigger RNAs bind to a small "toehold" sequence in the switch, which opens the hairpin up to now allow the ribosome access.

"In our Repressor Switch RNAs, we essentially inverted the function of Toehold Switches using two different strategies. A trigger RNA now induces a structural change in the switch that hides ribosome binding and translation start sites of an encoded protein and thus puts an abrupt stop to protein translation," said Alexander Green, Ph.D., a co-corresponding author of the study together with Yin. "By designing, refining, and studying large libraries of both Repressor Switch elements, we demonstrated that "Toehold Repressor Switches" achieve high dynamic range, allowing us to strongly modulate the production of green fluorescent protein in E. coli bacteria from a very high to a very low level - up to 300-fold." Green, a former Postdoctoral Fellow with Yin, joined ASU's Biodesign Institute and School of Molecular Sciences as Assistant Professor in 2015.

"With slightly lower dynamic ranges, "Three-Way Junction (3WJ) Repressor Switches" could be more effectively combined into complex modular circuits to sense multiple trigger RNAs without interference from each other," said co-first author Jongmin Kim, Ph.D. who worked as a postdoc in Yin's group and now is Assistant Professor at Pohang University of Science and Technology in the Republic of Korea. Kim shared the first-authorship with Green's graduate student Yu Zhou, who recently defended her Ph.D. "We combined up to 4 such repressor elements in NAND and NOR gates to conditionally stop the production of an output protein. Importantly, these elements can be freely interchanged."

In their optimization of 3WJ Repressor Switches the researchers teamed up with Julius Lucks' group at Northwestern University who had developed "SHAPE-Seq," a method that enables scientists to correlate the function of RNA molecules with their structural states in live cells. Lucks, Ph.D., is Associate Professor of Chemical and Biological Engineering at Northwestern University, Evanston. His group is also independently developing other types of RNA-based repressors using different approaches.

"This study wonderfully illustrates how the Wyss Institute's Molecular Robotics Initiative engages in collaborative activities that cross-disciplinary and institutional barriers to create programmable cellular devices that can move synthetic biology forward to meet real-world challenges," said Wyss Founding Director Donald Ingber, M.D., Ph.D., who is also the Judah Folkman Professor of Vascular Biology at HMS and the Vascular Biology Program at Boston Children's Hospital, as well as Professor of Bioengineering at Harvard's John A. Paulson School of Engineering and Applied Sciences.
-end-
Other authors on the study are Wyss Core Faculty members Pamela Silver, Ph.D., and James Collins, Ph.D.; Paul Carlson, Ph.D. at Northwestern University; Friedrich Simmel, Ph.D., Professor, and Mario Teichmann, Ph.D., at Technical University (TU), Munich; and Soma Chaudhary at ASU. The study was funded by Harvard's Wyss Institute for Biologically Inspired Engineering; ASU; and the National Institutes of Health, Gates Foundation, Defense Advanced Research Projects Agency (DARPA), Office of Naval Research, National Science Foundation, Defense Threat Reduction Agency, and Air Force Office of Scientific Research.

PRESS CONTACTS

Wyss Institute for Biologically Inspired Engineering at Harvard University

Benjamin Boettner, benjamin.boettner@wyss.harvard.edu, +1 617-432-8232

The Wyss Institute for Biologically Inspired Engineering at Harvard University (http://wyss.harvard.edu) uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing that are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and formation of new startups. The Wyss Institute creates transformative technological breakthroughs by engaging in high risk research, and crosses disciplinary and institutional barriers, working as an alliance that includes Harvard's Schools of Medicine, Engineering, Arts & Sciences and Design, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana-Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, Charité - Universitätsmedizin Berlin, University of Zurich and Massachusetts Institute of Technology.

Harvard Medical School (http://hms.harvard.edu) has more than 7,500 full-time faculty working in 11 academic departments located at the School's Boston campus or in one of 47 hospital-based clinical departments at 16 Harvard-affiliated teaching hospitals and research institutes. Those affiliates include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Health Alliance, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Hebrew Senior Life, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts General Hospital, McLean Hospital, Mount Auburn Hospital, Schepens Eye Research Institute, Spaulding Rehabilitation Hospital and VA Boston Healthcare System.

Wyss Institute for Biologically Inspired Engineering at Harvard

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.