Regeneration mechanism discovered in mice could provide target for drugs to combat chronic liver disease

November 04, 2019

A newly-discovered molecular mechanism that allows damaged adult liver cells to regenerate could pave the way for drugs to treat conditions such as cirrhosis or other chronic liver diseases where regeneration is impaired.

The mechanism, identified in mice, was made by researchers at the University of Cambridge's Gurdon Institute.

It has long been known that the human liver is one of the organs that can regenerate its own tissue after short-term injury. But chronic damage in conditions such as alcohol abuse, fatty liver disease and certain viral infections, leads to impaired regeneration and cirrhosis (scarring), with eventual loss of liver function.

The molecular mechanisms by which adult liver cells trigger the regenerative response, and how this fails in chronic liver disease, remain largely unknown. Around 30 million people across Europe suffer from chronic liver diseases, for which there is currently no cure, with liver transplants being the only treatment for liver failure. Scientists are therefore exploring how to trigger the intrinsic regenerative capacity of the liver, as an alternative means to restore function.

Researchers used mice and liver organoids ('mini-livers' generated in the lab from mouse liver cells) to study adult liver regeneration. They discovered that a molecule called TET1 is produced in healthy adult liver cells during the first steps of regeneration, and that this process is mimicked in liver organoids, where it has a role in stimulating organoid growth. The work is described in a paper published in the journal Nature Cell Biology.

Dr Luigi Aloia, first author of the paper and postdoctoral researcher at the Gurdon Institute, said: "We now understand how adult liver cells respond to the changes caused by tissue injury. This paves the way for exciting future work to boost cell regeneration in chronic liver disease, or in other organs where regeneration is minimal such as the brain or pancreas."

TET1 and similar molecules are known to be essential in the developing embryo, where cells divide and differentiate to produce all the different organs of the body. But this study is the first to demonstrate that the activity of TET1 underpins regeneration in adult mouse liver tissue.

The adult liver is formed by two main types of cells: hepatocytes, which perform many of the liver's functions, and ductal cells, which form the network of tiny ducts delivering bile to the intestine. After acute (short-term) damage hepatocytes are able to regenerate, but after more severe injury they are not. After severe or chronic injury, the ductal cells become capable of generating both new hepatocytes and new ductal cells to replenish the liver tissue, through induction of an identity-switching process known as plasticity.

The researchers, in collaboration with colleagues in the UK and Germany, explored the molecular mechanism that provides ductal cells with this power to regenerate the liver tissue. They showed that TET1 activates a chemical switch - known as an epigenetic modification - on the ductal cell's DNA. This switch allows genes to 'turn on' so that the cell can respond to changes in the environment such as damage, and activate the regeneration program when needed.

Dr Meritxell Huch, who led the research, said: "Our finding pinpoints TET1 as the protein that enables plasticity of the ductal cells and their regenerative capacity in response to injury. Because the epigenetic switch activated by TET1 does not modify the genetic sequence of the cell, but the mechanism by which the genes are expressed, it represents a target that could be modified by drugs."
-end-
The work was funded by the Wellcome Trust, Cancer Research UK and the Royal Society; Luigi Aloia holds a Horizon 2020 Marie Sklodowska-Curie Individual Fellowship.

University of Cambridge

Related Science Articles from Brightsurf:

75 science societies urge the education department to base Title IX sexual harassment regulations on evidence and science
The American Educational Research Association (AERA) and the American Association for the Advancement of Science (AAAS) today led 75 scientific societies in submitting comments on the US Department of Education's proposed changes to Title IX regulations.

Science/Science Careers' survey ranks top biotech, biopharma, and pharma employers
The Science and Science Careers' 2018 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Science in the palm of your hand: How citizen science transforms passive learners
Citizen science projects can engage even children who previously were not interested in science.

Applied science may yield more translational research publications than basic science
While translational research can happen at any stage of the research process, a recent investigation of behavioral and social science research awards granted by the NIH between 2008 and 2014 revealed that applied science yielded a higher volume of translational research publications than basic science, according to a study published May 9, 2018 in the open-access journal PLOS ONE by Xueying Han from the Science and Technology Policy Institute, USA, and colleagues.

Prominent academics, including Salk's Thomas Albright, call for more science in forensic science
Six scientists who recently served on the National Commission on Forensic Science are calling on the scientific community at large to advocate for increased research and financial support of forensic science as well as the introduction of empirical testing requirements to ensure the validity of outcomes.

World Science Forum 2017 Jordan issues Science for Peace Declaration
On behalf of the coordinating organizations responsible for delivering the World Science Forum Jordan, the concluding Science for Peace Declaration issued at the Dead Sea represents a global call for action to science and society to build a future that promises greater equality, security and opportunity for all, and in which science plays an increasingly prominent role as an enabler of fair and sustainable development.

PETA science group promotes animal-free science at society of toxicology conference
The PETA International Science Consortium Ltd. is presenting two posters on animal-free methods for testing inhalation toxicity at the 56th annual Society of Toxicology (SOT) meeting March 12 to 16, 2017, in Baltimore, Maryland.

Citizen Science in the Digital Age: Rhetoric, Science and Public Engagement
James Wynn's timely investigation highlights scientific studies grounded in publicly gathered data and probes the rhetoric these studies employ.

Science/Science Careers' survey ranks top biotech, pharma, and biopharma employers
The Science and Science Careers' 2016 annual Top Employers Survey polled employees in the biotechnology, biopharmaceutical, pharmaceutical, and related industries to determine the 20 best employers in these industries as well as their driving characteristics.

Three natural science professors win TJ Park Science Fellowship
Professor Jung-Min Kee (Department of Chemistry, UNIST), Professor Kyudong Choi (Department of Mathematical Sciences, UNIST), and Professor Kwanpyo Kim (Department of Physics, UNIST) are the recipients of the Cheong-Am (TJ Park) Science Fellowship of the year 2016.

Read More: Science News and Science Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.