# Researchers find best classroom shapes for fish swimming in schools

November 04, 2019A team of researchers has identified the best arrangements for fish swimming in schools--formations that are superior in terms of saving energy while also optimizing speed. Its findings, which appear in the journal

*Physical Review X*, point to potential new ways to enhance energy-producing technologies.

The work, conducted by researchers at New York University's Courant Institute of Mathematical Sciences, also confirms a long-held belief: fish swimming in orderly groups or formations spend less energy and move faster than when swimming alone.

"Animals have figured out some interesting tricks that can save energy and move faster, and these behaviors could translate into new energy-harvesting and propulsion devices," says Leif Ristroph, an associate professor at the Courant Institute and one of the paper's co-authors. "Our model could inform how to optimize such technologies."

Using a new type of mathematical model, the team, which also included Michael Shelley, a professor at the Courant Institute, and Anand Oza, an assistant professor at the New Jersey Institute of Technology, focused on several arrangements of swimmers to see which were the best in terms of saving the energy required to swim and enhancing the speed of swimming for the group. In particular, using computer simulations, they examined how multiple flapping swimmers emit vortices, or swirling flows, and also interact with the vortex flows produced by others in the school.

In every school formation tested, the group of swimmers used less energy and moved faster than did solitary swimmers, with some notable differences among these arrangements:

- Phalanx arrangements, in which fish are lined up side-by-side, showed modest improvements over a solitary swimmer;
- Tandem formations, in which fish are lined up single file one after another, showed even more improvement over a solitary swimmer;
- Rectangular lattice formations--which combine the phalanx and tandem formations so that each fish has neighbors directly upstream, downstream and to either side--were superior to both the tandem and phalanx schools;
- Diamond-shaped lattices, in which each fish has one direct upstream neighbor as well as two neighbors upstream and somewhat displaced to each side, yielded the greatest speeds and largest energy savings--i.e., the best formation tested.

"By formulating a mathematical model capable of handling many swimmers interacting through their collectively generated flows, we think we have offered some concrete support for the idea that schooling fish may benefit from flow interactions," observes Ristroph. "We also hope to apply these same methods to other related problems--for example, flying formations of birds."

-end-

This work was supported by a grant from the National Science Foundation (DMS-1847955).DOI: 10.1103/PhysRevX.9.041024

New York University

## Related Mathematical Model Articles from Brightsurf:

A mathematical model facilitates inventory management in the food supply chain

A research study in the Diverfarming project integrates transport resources and inventory management in a model that seeks economic efficiency and to avoid shortages

Mathematical modelling to prevent fistulas

It is better to invest in measures that make it easier for women to visit a doctor during pregnancy than measures to repair birth injuries.

Predicting heat death in species more reliable with new mathematical model

An international research with the involvement of the Universitat AutÃ²noma de Barcelona (UAB), published in Science, has developed a new dynamic mathematical model which represents a change in paradigm in predicting the probability of heat-related mortality in small species.

Using a Gaussian mathematical model to define eruptive stages of young volcanic rocks

Precise dating of young samples since the Quaternary has been a difficult problem in the study of volcanoes and surface environment.

Moffitt mathematical model predicts patient outcomes to adaptive therapy

In an article published in Nature Communications, Moffitt Cancer Center researchers provide a closer look at a mathematical model and data showing that individual patient alterations in the prostate-specific antigen (PSA) biomarker early in cancer treatment can predict outcomes to later treatment cycles of adaptive therapy.

New mathematical model can more effectively track epidemics

As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.

Mathematical model could lead to better treatment for diabetes

MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.

New mathematical model reveals how major groups arise in evolution

Researchers at Uppsala University and the University of Leeds presents a new mathematical model of patterns of diversity in the fossil record, which offers a solution to Darwin's ''abominable mystery'' and strengthens our understanding of how modern groups originate.

Mathematical model reveals behavior of cellular enzymes

Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

New mathematical model for amyloid formation

Scientists report on a mathematical model for the formation of amyloid fibrils.

Read More: Mathematical Model News and Mathematical Model Current Events

A research study in the Diverfarming project integrates transport resources and inventory management in a model that seeks economic efficiency and to avoid shortages

Mathematical modelling to prevent fistulas

It is better to invest in measures that make it easier for women to visit a doctor during pregnancy than measures to repair birth injuries.

Predicting heat death in species more reliable with new mathematical model

An international research with the involvement of the Universitat AutÃ²noma de Barcelona (UAB), published in Science, has developed a new dynamic mathematical model which represents a change in paradigm in predicting the probability of heat-related mortality in small species.

Using a Gaussian mathematical model to define eruptive stages of young volcanic rocks

Precise dating of young samples since the Quaternary has been a difficult problem in the study of volcanoes and surface environment.

Moffitt mathematical model predicts patient outcomes to adaptive therapy

In an article published in Nature Communications, Moffitt Cancer Center researchers provide a closer look at a mathematical model and data showing that individual patient alterations in the prostate-specific antigen (PSA) biomarker early in cancer treatment can predict outcomes to later treatment cycles of adaptive therapy.

New mathematical model can more effectively track epidemics

As COVID-19 spreads worldwide, leaders are relying on mathematical models to make public health and economic decisions.

Mathematical model could lead to better treatment for diabetes

MIT researchers have developed a mathematical model that can predict the behavior of glucose-responsive insulin in humans and in rodents.

New mathematical model reveals how major groups arise in evolution

Researchers at Uppsala University and the University of Leeds presents a new mathematical model of patterns of diversity in the fossil record, which offers a solution to Darwin's ''abominable mystery'' and strengthens our understanding of how modern groups originate.

Mathematical model reveals behavior of cellular enzymes

Mathematical modeling helps researchers to understand how enzymes in the body work to ensure normal functioning.

New mathematical model for amyloid formation

Scientists report on a mathematical model for the formation of amyloid fibrils.

Read More: Mathematical Model News and Mathematical Model Current Events

Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.